

1 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

[MS - SSTDS]:
Tabular Data Stream Protocol
Version 4.2

Intellectual Property Rights Notice for Open Specifications Documentation

Á Technical Documentation. Microsoft publishes Open Specifications documentation for
protocols, file formats, languages, standards as well as overviews of the interaction among each
of these technologies.

Á Copyrights. This documentation is covered by Microsoft copyrights. Regardles s of any other

terms that are contained in the terms of use for the Microsoft website that hosts this
documentation, you may make copies of it in order to develop implementations of the
technologies described in the Open Specifications and may distribute p ortions of it in your
implementations using these technologies or your documentation as necessary to properly
document the implementation. You may also distribute in your implementation, with or without

modification, any schema, IDLôs, or code samples that are included in the documentation. This
permission also applies to any documents that are referenced in the Open Specifications.

Á No Trade Secrets. Microsoft does not claim any trade secret rights in this documentation.

Á Patents. Microsoft has patents that may cover your implementations of the technologies
described in the Open Specifications. Neither this notice nor Microsoft's delivery of the
documentation grants any licenses under those or any other Microsoft patents. However, a given
Open Specification may be covered by Microsoft Open Specification Promise or the Community

Promise . If you would prefer a written license, or if the te chnologies described in the Open

Specifications are not covered by the Open Specifications Promise or Community Promise, as
applicable, patent licenses are available by contacting iplg@microsoft.com .

Á Trademarks. The names of companies and products contained in this documentation may be
covered by trademarks or similar intellectual property rights. This notice does not grant any
licenses under those rights.

Á Fictitious Names. The example companies, organizations, prod ucts, domain names, e -mail

addresses, logos, people, places, and events depicted in this documentation are fictitious. No
association with any real company, organization, product, domain name, email address, logo,
person, place, or event is intended or sh ould be inferred.

Reservation of Rights. All other rights are reserved, and this notice does not grant any rights
other than specifically described above, whether by implication, estoppel, or otherwise.

Tools. The Open Specifications do not require the use of Microsoft programming tools or

programming environments in order for you to develop an implementation. If you have access to
Microsoft programming tools and environments you are free to take advantage of them. Certain
Open Specifications are intended f or use in conjunction with publicly available standard
specifications and network programming art, and assumes that the reader either is familiar with the
aforementioned material or has immediate access to it.

http://go.microsoft.com/fwlink/?LinkId=214445
http://go.microsoft.com/fwlink/?LinkId=214448
http://go.microsoft.com/fwlink/?LinkId=214448
mailto:iplg@microsoft.com

2 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Revision Summary

Date

Revision

History

Revisio n

Class Comments

08/07/2009 0.1 Major First release.

11/06/2009 0.2 Minor Updated the technical content.

03/05/2010 0.2.1 Editorial Revised and edited the technical content.

04/21/2010 0.2.2 Editorial Revised and edited the technical content.

06/04/2010 0.2.3 Editorial Revised and edited the technical content.

09/03/2010 0.2.3 No change No changes to the meaning, language, or formatting of

the technical content.

02/09/2011 0.3.0 Minor Clarified the meaning of the technical content.

07/07/2011 1.0 Major Significantly changed the technical content.

11/03/2011 1.0 No change No changes to the meaning, language, or formatting of

the technical content.

3 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Contents

1 Introduction 7
1.1 Glossary 7
1.2 References 8

1.2.1 Normative References 8
1.2.2 Informative References 9

1.3 Protocol Overview (Synopsis) 9
1.4 Relationship to Other P rotocols 11
1.5 Prerequisites/Preconditions 11
1.6 Applicability Statement 11
1.7 Versioning and Capability Negotiation 12
1.8 Ven dor -Extensible Fields 12
1.9 Standards Assignments 12

2 Messages 13
2.1 Transport 13
2.2 Message Syntax 13

2.2.1 Client Messages 13
2.2.1.1 Pre -Login 14
2.2.1.2 Login 14
2.2.1.3 SQL Batch 14
2.2.1.4 Bulk Load 14
2.2.1 .5 Remote Procedure Call 14
2.2.1.6 Attention 14
2.2.1.7 Transaction Manager Request 15

2.2.2 Server Messages 15
2.2.2.1 Pre -Login Response 15
2.2.2.2 Login Response 15
2.2.2.3 Row Data 16
2.2.2.4 Return Status 16
2.2.2.5 Return Parameters 16
2.2.2.6 Response Completion (DONE) 16
2.2.2.7 Error and Info Messages 16
2.2.2.8 Attention Acknowledgment 17

2.2.3 Packets 17
2.2.3.1 Packet Header 17

2.2.3.1.1 Type 17
2.2.3.1.2 Status 18
2.2.3.1.3 Length 19
2.2.3.1.4 SPID 19
2.2.3.1.5 PacketID 19
2.2.3.1.6 Window 19

2.2.3.2 Packet Data 19
2.2.4 Packet Data Token and Tokenless Data Streams 19

2.2.4.1 Tokenless Stream 20
2.2.4.2 Token Stream 20

2.2.4.2.1 Token Definition 20
2.2.4.2.1.1 Zero -Length Token (xx01xxxx) 21
2.2.4.2.1.2 Fixed -Length Token (xx11xxxx) 21
2.2.4.2.1.3 Variable -Length Token (xx10xxxx) 21

2.2.4.3 DONE and Attention Tokens 22

4 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

2.2.4.4 Token Stream Examples 22
2.2.4.4.1 Sending a SQL Batch 22
2.2.4.4.2 Out -of -Band Attention Signal 23

2.2.5 Grammar Definition for Token Description 23
2.2.5.1 General Rules 23

2.2.5.1.1 Least Significant Bit Order 25
2.2.5.2 Data Stream Types 26

2.2.5.2.1 Unknown -Length Data Streams 26
2.2.5.2.2 Variable -Length Data Streams 26
2.2.5.2.3 Data -Type -Dependent Data Streams 26

2.2.5.3 Data Type Definitions 27
2.2.5.3.1 Fixed -Length Data Types 27
2.2.5.3.2 Variable -Length Data Types 28

2.2.5.4 Data Type Details 30
2.2.5.4.1 System Data Type Values 30

2.2.5.4.1.1 Integers 30
2.2.5.4.1.2 Timestamp 30
2.2.5.4.1.3 Character and Binary Strings 30
2.2.5.4.1.4 Fixed -Point Numbers 30
2.2.5.4.1.5 Floating -Point Numbers 30
2.2.5.4.1.6 Decimal/Numeric 31
2.2.5.4.1.7 GUID 31
2.2.5.4.1.8 Date/Times 31

2.2.5.5 Type Info Rule Definition 31
2.2.5.6 Data Buffer Stream Tokens 32

2.2.6 Packet Header Message Type Stream Definition 32
2.2.6.1 Bulk Load BCP 32
2.2.6.2 Bulk Load Update Text/Write Text 34
2.2.6.3 LOGIN 35
2.2.6.4 PRELOGIN 39
2.2.6.5 RPC Request 41
2.2.6.6 SQLBatch 43
2.2.6.7 SSPI Message 44
2.2.6.8 Transaction Manager Request 45

2.2.7 Packet Data Token Stream Definition 46
2.2.7.1 ALTFMT 46
2.2.7.2 ALTNAME 48
2.2.7.3 ALTROW 49
2.2.7.4 COLINFO 50
2.2.7.5 COLFMT 51
2.2.7.6 COLNAME 52
2.2.7.7 DONE 53
2.2.7.8 DONEINPROC 54
2.2.7.9 DONEPROC 56
2.2.7.10 ENVCHANGE 57
2.2.7.11 ERROR 58
2.2.7.12 INFO 61
2.2.7.13 LOGINACK 62
2.2.7.14 OFFSET 63
2.2.7.15 ORDER 64
2.2.7.16 RETURNSTATUS 65
2.2.7.17 RETURNVALUE 66
2.2.7.18 ROW 67

5 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

2.2.7.19 SSPI 68
2.2.7.20 TABNAME 69

2.3 Directory Service Schema Elements 70

3 Protocol Details 71
3.1 Common Details 71

3.1.1 Abstract Data Model 71
3.1.2 Timers 71
3.1.3 Initialization 71
3.1 .4 Higher -Layer Triggered Events 71
3.1.5 Message Processing Events and Sequencing Rules 71
3.1.6 Timer Events 75
3.1.7 Other Local Events 75

3.2 Client Details 76
3.2.1 Abstract Data Model 76
3.2.2 Timers 77
3.2.3 Initialization 77
3.2.4 Higher -Layer Triggered Events 77
3.2.5 Message Processing Events and Sequencing Rules 78

3.2.5.1 Sent Initial PRELOGIN Packet State 79
3.2.5.2 Sent TLS/SSL Negotiation Packet State 79
3.2.5.3 Sent LOGIN Record State 80
3.2.5.4 Sent SSPI Record with SPNEGO Packet State 80
3.2.5.5 Logged In State 80
3.2.5.6 Sent Client Reque st State 81
3.2.5.7 Sent Attention State 81
3.2.5.8 Final State 81

3.2.6 Timer Events 81
3.2.7 Other Local Events 81

3.3 Server Details 82
3.3.1 Abstract Data Model 82
3.3.2 Timers 83
3.3.3 Initialization 83
3.3.4 Higher -Layer Triggered Events 83
3.3.5 Message Processing Events and Sequencing Rules 83

3.3.5.1 Initial State 83
3.3.5.2 TLS/SSL Negotiation 83
3.3.5.3 Login Ready 84
3.3.5.4 SPNEGO Negotiation 84
3.3.5.5 Logged In 84
3.3.5.6 Client Request Execution 85
3.3.5.7 Final State 85

3.3.6 Timer Events 85
3.3.7 Other Local Events 85

4 Protocol Examples 86
4.1 Pre -Login Request 86
4.2 Login Request 87
4.3 Login Response 91
4.4 SQL Batch Client Request 95
4.5 SQL Batch Server Response 95
4.6 RPC Client Request 97
4.7 RPC Server Response 98

6 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

4.8 Attention Request 100
4.9 SSPI Message 100
4.10 Bulk Load 101
4.11 Transaction Manager Request 102

5 Security 104
5.1 Security Considerations for Implementers 104
5.2 Index of Security Parameters 104

6 Appendix A: Product Behavior 105

7 Change Tracking 107

8 Index 108

7 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

1 Introduction

This document specifies the Microsoft Tabular Data Stream Version 4.2 (TDS 4.2), a Microsoft -
proprietary protocol. All references to the term SQL Server refer to the Microsoft® SQL Server®
product line. The TDS 4.2 protocol is an application layer request/ response protocol that facilitates
interaction with a database server and provides for:

Á Authentication and channel encryption negotiation.

Á Specification of requests in SQL (including bulk insert).

Á Invocation of a stored procedure or u ser -defined function, also known as a remote procedure

call (RPC) .

Á Return of data.

Á Transaction manager requests.

1.1 Glossary

The following terms are defined in [MS -GLOS] :

big - endian
little - endian
Security Support Provider Interface (SSPI)
stored procedure
table response

transaction manager

The following terms are specific to this document:

bulk insert: A method for efficiently populating the rows of a table from the client to the
server .

client: A program that establishes connections for the purpose of sending requests.

column: A set of data composed of the same field from each row in a table.

data stream: A stream of data that corresponds to specific TDS 4.2 semantics. A single data

stream can represent an entire TDS 4.2 message or only a specific, well -defined portion of a
TDS 4.2 message. A TDS 4.2 data stream can span multiple network data packets.

Distributed Transaction Coordinator (DTC): A Windows service that coordinates transactions
across multiple databases. For more information, see [MSDN -DTC] .

final state: The application layer has finished the communication, and the lower - layer
connection should be disconnected.

initial state: A prerequisite for application - layer communication. A lower - layer channel that can
provide relia ble communication must be established.

out - of - band: A type of event that happens outside of the standard sequence of events.
Specifically, the idea that a signal or message can be sent during an unexpected time and will
not cause any protocol parsing issue s.

remote procedure call (RPC): The direct invocation of a stored procedure or user -defined
function on the server .

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89994

8 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

request: A TDS 4.2 message initiated by a client and sent to a server .

response: A TDS 4.2 message sent by a server to a client in response to a previously issued

request .

server: An application program that accepts connections to service requests by sending back

responses . Any program may be capable of being both a client and a server. Use of these
terms refers only to the role being performe d by the program for a particular connection
rather than to the program's capabilities in general.

SQL batch: A set of SQL statements .

SQL Server User Authentication (SQLAUTH): An authentication mechanism used to support
SQL Server user accounts. The user name and password of the user account are transmitted
as part of the login message that the client sends to the server .

SQL statement: A character string expression in a languag e that the server understands.

TDS 4.2 session: A successfully established communication session between a client and a

server on which the TDS 4.2 protocol is used for message exchange.

MAY, SHOULD, MUST, SHOULD NOT, MUST NOT: These terms (in all caps) ar e used as
described in [RFC2119] . All statements of optional behavior use either MAY, SHOULD, or
SHOULD NOT.

1.2 References

References to Microsoft Open Specification documents do not include a publishing year because links
are to the latest version of the documents, which are updated frequently. References to other
documents include a publishing year when one is available.

1.2.1 Normative References

We conduct frequent surveys of the normative references to assure their continued availability. If

you have any issue with finding a normative reference, please contact dochelp@microsoft.com . We
will assist you in finding the relevant information. Please check the archive site,
http://msdn2.microsoft.com/en -us/library/E4BD6494 -06 AD-4aed -9823 -445E921C9624 , as an
additional source.

[IANAPORT] Internet Assigned Numbers Authority, "Port Numbers", November 2006,
http://www.iana.org/assignments/port -numbers

[IEEE754] Institute of Electrical and Electronics Engineers, "Standard for Binary Floating -Point
Arithmetic", IEEE 754 -1985, October 1985,
http://ieeexplore.ieee.org/servlet/opac?punumber=2355.

[PIPE] Microsoft Cor poration, "Named Pipes", http://msdn.microsoft.com/en -
us/library/aa365590.aspx

[RFC793] Postel, J., "Transmission Control Protocol", STD 7, RFC 793, September 1981,

http://www.ietf.org/rfc/rfc0793.txt

[RFC1122] Braden, R., ed., "Requirements for Internet Hosts -- Communication Layers", STD 3, RFC
1122, October 1989, http://www .ietf.org/rfc/rfc1122.txt

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC
2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt

http://go.microsoft.com/fwlink/?LinkId=90317
mailto:dochelp@microsoft.com
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=89888
http://go.microsoft.com/fwlink/?LinkId=89903
http://go.microsoft.com/fwlink/?LinkId=90247
http://go.microsoft.com/fwlink/?LinkId=90247
http://go.microsoft.com/fwlink/?LinkId=90493
http://go.microsoft.com/fwlink/?LinkId=112180
http://go.microsoft.com/fwlink/?LinkId=90317

9 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

[RFC2246] Dierks, T. , and Allen, C., "The TLS Protocol Version 1.0", RFC 2246, January 1999,
http://www.ietf.org/rfc/rfc2246.txt

[RFC4234] Crocker, D., Ed., and Overell, P., "Augmented BNF for Syntax Specifications: ABNF", RFC
4234, October 2005, http://www.ietf.org/rfc/rfc4234.txt

[SSL3] Netscape, "SSL 3.0 Specification", http://tools.ietf.org/ht ml/draft - ietf - tls -ssl -version3 -00

If you have any trouble finding [SSL3], please check here .

1.2.2 Informative References

[MBCS] Microsoft Corporation, "Code Pages Supported by Windows", http://msdn.microsoft.com/en -
us/goglobal/bb964654.aspx

[MS -GLOS] Microsoft Corporation, " Windows Protocols Master Glossary ".

[MSDN -BROWSE] Microsoft Corporation, "Browse Mode", http://msdn.microsoft.com/en -
us/library/aa936959(SQL.80).aspx

[MSDN -BULKINSERT] Microsoft Corporation, "About Bulk Import and Bulk Export Operations",
http://msdn.microsoft.com/en -us/library/ms187042.aspx

[MSDN -DTC] Microsoft Corporation, "Distributed Transaction Coordina tor",
http://msdn.microsoft.com/en -us/library/ms684146.aspx

[MSDN -NamedPipes] Microsoft Corporation, "Creating a Valid Connection String Using Named
Pipes", http://msdn.microsoft.com/en -us/library/ms189307.aspx

[MSDN -UPDATETEXT] Microsoft Corporation, "UPDATETEXT (Transact -SQL)",
http://msdn.microsoft.com/en -us/library/ms1894 66(SQL.105).aspx

[MSDN -WRITETEXT] Microsoft Corporation, "WRITETEXT (Transact -SQL)",
http://msdn.microsoft.com/en -us/library/ms186838(SQL.105).aspx

[NTLM] Microsoft Corporation, "Microsoft NTLM" , http://msdn.microsoft.com/en -

us/library/aa378749.aspx

If you have any trouble finding [NTLM], please check here .

[RFC4120] Neuman, C., Yu, T., Hartman, S., and Raeburn, K., "The Kerberos Network
Authentication Service (V5)", RFC 4120, July 2005, http://www.ietf.org/rfc/rfc4120.txt

[RFC4178] Zh u, L., Leach, P., Jaganathan, K., and Ingersoll, W., "The Simple and Protected Generic
Security Service Application Program Interface (GSS -API) Negotiation Mechanism", RFC 4178,
October 2005, htt p://www.ietf.org/rfc/rfc4178.txt

[SSPI] Microsoft Corporation, "SSPI", http://msdn.microsoft.com/en -us/library/aa380493.aspx

1.3 Protocol Overview (Synopsis)

The TDS 4.2 protocol is an application - level protocol used for the transfer of requests and
responses between clients and database server systems. In such systems, the client will typically
establish a long - lived connection with the server. Once the connection is established using a

transport - level protocol, TDS 4.2 messages are used to communicate between the cli ent and the
server. A database server can also act as the client if needed, in which case a separate TDS 4.2
connection must be established. Note that the TDS 4.2 session is directly tied to the transport -

http://go.microsoft.com/fwlink/?LinkId=90324
http://go.microsoft.com/fwlink/?LinkId=90462
http://go.microsoft.com/fwlink/?LinkId=90534
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=152566
http://go.microsoft.com/fwlink/?LinkId=152566
%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=140931
http://go.microsoft.com/fwlink/?LinkId=140931
http://go.microsoft.com/fwlink/?LinkId=112204
http://go.microsoft.com/fwlink/?LinkId=89994
http://go.microsoft.com/fwlink/?LinkId=127839
http://go.microsoft.com/fwlink/?LinkId=190253
http://go.microsoft.com/fwlink/?LinkId=190252
http://go.microsoft.com/fwlink/?LinkId=90235
http://go.microsoft.com/fwlink/?LinkId=90235
http://msdn2.microsoft.com/en-us/library/E4BD6494-06AD-4aed-9823-445E921C9624
http://go.microsoft.com/fwlink/?LinkId=90458
http://go.microsoft.com/fwlink/?LinkId=90461
http://go.microsoft.com/fwlink/?LinkId=90536

10 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

level session, meaning that a TDS 4.2 session is established when the transport - level connection is
established and the server receives a request to establish a TDS 4.2 connection. It persists until the

transport - level connection is terminated (for example, when a TCP socket is close d). In addition,
TDS 4.2 does not make any assumption about the transport protocol used, but it does assume the

transport protocol supports reliable, in -order delivery of the data.

The TDS 4.2 protocol includes facilities for authentication and identificat ion, channel encryption
negotiation, issuing of SQL batches , stored procedure calls, returning data, and transaction
manager requests. Returned data is self -describing and record -oriented. The data streams
describe the names, types, and optional descriptions of the rows being returned. The following
figure depicts a (simplified) typical flow of communication for TDS 4.2.

Figure 1: Communication fl ow in the TDS 4.2 protocol

The following example is a high - level description of the messages exchanged between the client and
the server to execute a simple client request, such as the execution of a SQL statement . It is
assumed that the client and the server have already established a connection and authentication
has succeeded.

Client:SQL statement

The server executes the SQL statement and then sends back the results to the client. The data

columns being retur ned are first described by the server (represented as column metadata that

%5bMS-GLOS%5d.pdf

11 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

contains COLNAME and COLFMT) and then the rows follow. A completion message is sent after all
the row data has been transferred.

Server:COLNAMEdata stream

COLFMTdata stream

ROWdata stream

.

.

ROWdata stream

DONEdata stream

See section 2.2.4 for additional information on the correlation between the data stream and TDS 4.2

buffer.

1.4 Relationship to Other Protocols

The TDS 4.2 protocol depends upon a network transport connection being established prior to a TDS

4.2 conversation occurring (the choice of transport protocol is not important to TDS 4.2).

This relationship is illustrated in the following figure.

Figure 2: Protocol relationship

1.5 Prerequisites/Preconditions

Throughout this document, it is assumed that the client has already discovered the server and
established a network transport connection for use with TDS 4.2.

No security association is assumed to have been established at the lower layer before TDS 4.2
begins functioning. For SSPI authentication to be used, SSPI support must be available on both the
client and server machines (for m ore information about SSPI, see [SSPI]). If channel encryption is
to be used, Transport Layer Security (TLS) /Secure Socket Layer (SSL) support must be present on
both the client and server machi nes, and a certificate suitable for encryption must be deployed on

the server machine. (For more details about TLS, see [RFC2246] .)

1.6 Applicability Statement

The TDS 4.2 protocol is appropriate to use for facilitating request/response communications between
an application and a database server in all scenarios in which network or local connectivity is
available.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=90536
http://go.microsoft.com/fwlink/?LinkId=90324

12 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

1.7 Versioning and Capability Negotiation

This document covers versioning issues in the following areas:

Á Supported Transports: This protocol can be implemented on top of any network transport

protocol as discussed in section 2.1 .

Á Protocol Versions: This protocol supports exactly one version, which is Tabular Data Stream

Protocol Version 4.2.

Á Security and Authentication Methods: The TDS 4.2 protocol supports SQL Server User

Authentication (SQLAUTH) . SQLAUTH is an authentication mechanism used to support

SQL Server user accounts. The user name and password of the user account are transmitted as
part of the login message that the client sends to the server. The TDS 4.2 protocol also supports
SSPI authentication and indirectly supports any authentication mechanism that SSPI supports.
The use of SSPI in TDS 4.2 is defined in sections 2.2.6.7 and 3.2.5.1 .

Á Capability Negotiation: This protocol does explicit capability negotiation as specified in this

section.

In general, the TDS 4.2 protocol does not provide facilities for capability negotiation, because the
complete set of supported features is fixed for each version of the protocol. Certain features such as
authentication type are not negotiated, but instead requested by the client. However, one feature
that is negotiated is channel encryption. The encryptio n behavior used for the TDS 4.2 session is
negotiated in the initial messages exchanged by the client and server. See the PRELOGIN
description in section 2.2.6.4 for further details.

Note that the cipher suite for TLS/SSL and the authentication mechanism for SSPI are negotiated

outside of the influence of TDS 4.2 (for more details, see [RFC2246] and [SSL3]).

1.8 Vendor - Extensible Fields

None.

1.9 Standards Assignments

Parameter TCP port value Reference

Default SQL Server instance TCP port 1433 [IANAPORT]

http://go.microsoft.com/fwlink/?LinkId=90324
http://go.microsoft.com/fwlink/?LinkId=90534
http://go.microsoft.com/fwlink/?LinkId=89888

13 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

2 Messages

The formal syntax of all messages is specified in Augmented Backus -Naur Form (ABNF); for more
details, see [RFC4234] .

2.1 Transport

The TDS 4.2 protocol does not prescribe a specific underlying transport protocol to use on the
Internet or on other networks. This protocol only presumes a reliable transport that guarantees in -
sequence delivery of data.

The chosen transport may be either stream -oriented or message -oriented. If a message -oriented
transport is used, then any TDS 4.2 packet sent from a TDS 4.2 client to a TDS 4.2 server MUST be
contained within a single transport data unit. Any additional ma pping of TDS 4.2 data onto the
transport data units of the protocol in question is outside the scope of this specification.

The TDS 4.2 protocol has implementations over the following transports:

Á TCP. For more details, see [RFC793] .

Á Named Pipes in message mode. For more details, see [PIPE] .<1>

Á Optionally, the TDS 4.2 protocol has implemented TLS (for more details, see [RFC2246]) and SSL

on top of the preceding transports, in case TLS/SSL encryption is negotiated.

2.2 Message Syntax

Character data, such as SQL statements, within a TDS 4.2 message is in multi -byte character set

(MBCS) format (for more information, see [MBCS]). Character counts within TDS 4.2 messages are
specified as byte counts.

2.2.1 Client Messages

Messages sent from the client to the server are as follows:

Á A pre - login record

Á A login record

Á A SQL batch (in any language that the server will accept)

Á A SQL statement followed by its associated binary data (for example, the data for a bulk load

SQL statement)

Á A remote procedure call (RPC)

Á An attention signal

Á A transaction manager request

These are briefly described in the subsections under this section; detailed descriptions of message
contents are incl uded in section 2.2.6 .

http://go.microsoft.com/fwlink/?LinkId=90462
http://go.microsoft.com/fwlink/?LinkId=90493
http://go.microsoft.com/fwlink/?LinkId=90247
http://go.microsoft.com/fwlink/?LinkId=90324
http://go.microsoft.com/fwlink/?LinkId=152566

14 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

2.2.1.1 Pre - Login

Before a login occurs, a handshake -denominated pre - login message exchange occurs between client
and server, setting up contexts such as encryption. See section 2.2.6.4 for additional details.

2.2.1.2 Login

When the client begins to establish a TDS 4.2 protocol connection with the server side, the client
MUST send a login message data stream to the server. The client may have more than one
connection to the server, but each connection is established separately in the same way. For
additional details, see section 2.2.6.3 .

After the server ha s received the login record from the client, it will notify the client that it has

either accepted or rejected the connection request. For additional details, see section 3.3.5.1 .

2.2.1.3 SQL Batch

To send a SQL statement or a batch of SQL statements, the SQL batch, represented by a multiple -

byte character set (MBCS) string, is copied into the data section of a TDS 4.2 packet and then sent
to the server . A SQLBatch packet header may span more than one TDS 4.2 packet. For additional
details, see section 2.2.6.6 .

2.2.1.4 Bulk Load

The bulk insert/bulk load operation is a case of a SQL statement that is followed by binary data. The
client first sends the INSERT BULK SQL statement. The server responds with a DONE token. The
client then sends a BulkLoadBCP data stream to the server. For additional details, see section
2.2.6.1 .

2.2.1.5 Remote Procedure Call

To execute a remote procedure call (RPC) on the server, the client sends an RPC message data
stream to the server. This is a binary stream that contains the RPC name or numeric identifier,

options, and parameters. RPCs MUST be in a separate TDS 4.2 message and not intermixed with
SQL statements. There can be several RPCs in one message. For additional d etails, see section
2.2.6.5 .

2.2.1.6 Attention

The client can interrupt and cancel the current request by sending an Attention message. This is also
known as out - of - band data, but any TDS 4.2 packet (request) that is currently being sent MUST be
completely sent before sending the Attention message. After the client sends an Attention message,
the client MUST read until it receives an Attention acknowledgment.

If a comple te request has been sent to the server, sending a cancel request requires sending an

Attention packet. An example of this behavior is when the client has already sent a request, which
has the last packet with the EOM bit (0x01) set in the status. The Atten tion packet is the only way
to interrupt a complete request that has already been sent to the server. See section 2.2.4.4.2 for
additional details.

If a complete request has not been sent to the server, the client MUST send the next packet with
both the ignore bit (0x02) and EOM bit (0x01) set in the status to cancel the request. An example of
this behavior is when one or more packets have been sent but the last packet with the EOM bit

(0x01) set in the s tatus has not been sent. Setting the ignore and EOM bits terminates the current
request, and the server MUST ignore the current request. When the ignore and EOM bits are set, the

15 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

server will not send an Attention acknowledgment but instead return a table response with a
single DONE token with a status of DONE_ERROR to indicate the incoming request was ignored. See

section 2.2.3.1.2 for additional details about the buffer head er status code.

2.2.1.7 Transaction Manager Request

The client can request that the connection enlist in a Distributed Transaction Coordinator (DTC)
transaction. For more information, see [MSDN -DTC] .

2.2.2 Server Messages

Messages sent from the server to the client are as follows:

Á A pre - login response

Á A login response

Á Row data

Á The return status of an RPC

Á The return parameters of an RPC

Á The response completion

Á The error and information

Á An attention signal

These are briefly described in the following sections; d etailed descriptions of message contents are
included in section 2.2.6 .

2.2.2.1 Pre - Login Response

The pre - login response is a tokenless packet data stream. The data stream consists of the response
to the information requested by the client pre - login message. For a detailed description of this
stream, see section 2.2.6.4 .

2.2.2.2 Login Response

The login response is a token stream consisting of information about the server's characteristics,
optional information, and error messages, followed by a completion message.

The LOGINACK token data stream includes information about the server interface and the server's
product code and name. For a detailed description of the login response data stream, see section
2.2.7.13 .

If there are any messages in t he login response, an ERROR or INFO token data stream is returned
from the server to the client. For additional information, see sections 2.2.7.11 and 2.2.7.12 .

As part of the login response, the server may send one or more ENVCHANGE token data streams if
the login changed the environment and the associated notification flag was set. An example of an
environment change includes the current database cont ext and language setting. For more details
about the different environment changes, see section 2.2.7.10 .

If the database specified for connection in the login packet is participating in real - time log sh ipping,
the corresponding ENVCHANGE is included as part of the response.

%5bMS-GLOS%5d.pdf
http://go.microsoft.com/fwlink/?LinkId=89994

16 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

A DONE token data stream MUST be the last thing sent in response to a client login request. For
additional information about the DONE token data stream, see section 2.2.7.7 .

2.2.2.3 Row Data

If the client request results in data being returned, the data precedes any other data streams
returned from the server. Row data MUST be preceded by a description of the column names and
data types. For additional information about how the column names and data types are described,
see sections 2.2.7.6 and 2.2.7.5 .

2.2.2.4 Return Status

When a stored procedure is executed by the server , the server must return a status value. This is a

4-byte integer and is sent via the RETURNSTATUS token. A stored procedure execution is requested
through either an RPC Batch or SQL Batch message. For additional information, see section
2.2.7.16 .

2.2.2.5 Return Parameters

The response format for execution of a stored procedure is identical regardless of whether the
request was sent as SQL Batch or RPC Batch. It is always a tabular result - type message.

The procedure can explicitly send any data, including row data, informational messages, and error
messages. This data is sent in the usual way.

When the RPC is invoked, some or all of its parameters are designated as output parameters. All
output parameter s have values returned from the server. For each output parameter, there is a
corresponding return value that is sent via the RETURNVALUE token. The RETURNVALUE token data
stream is also used for sending back the value returned by a user -defined function (UDF), if it is

called as an RPC. For additional details about the RETURNVALUE token, see section 2.2.7.17 .

2.2.2.6 Response Completion (DONE)

The client reads results in logical units and can determine when all results have been received by
examining the DONE token data stream.

When executing a batch of SQL statements, the server MUST return a DONE token data stream for
each set of results. All but the last DONE will have the DONE_MORE bit set in the Status field of the

DONE token data stream. Therefore, the client can always determine after reading a DONE whether
there are more r esults. For additional details about the DONE token, see section 2.2.7.7 .

For stored procedures, completion of SQL statements in a stored procedure is indicated by a
DONEINPROC token data stream <2> for each SQL statement and a DONEPROC token data stream
for each completed stored procedure. For additional details about DONEINPROC and DONEPROC
tokens, see sections 2.2.7.8 and 2.2.7.9 , respectively.

2.2.2.7 Error and Info Messages

Besides returning a description of row data and the data itself, TDS 4.2 provides a token data

stream type for the server to send error or informational messages to the client . These are the INFO
token data stream, described in section 2.2.7.12 and the ERROR token data stream, described in
section 2.2.7.11 .

17 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

2.2.2.8 Attention Acknowledgment

After a client has sent an interrupt signal to the server, the client MUST read returning data until the
interrupt has been acknowledged. Attentions are acknowledged in the DONE token data stream,

described in section 2.2.7.7 .

2.2.3 Packets

A packet is the unit written or read at one point in time. A message may consist of one or more
packets. A packet always includes a packet header and is usually followed by packet data that
contains the message. Each new message starts in a new packet.

In practice, both the client and server will try to read a packet full of data. They will pick out the

header to see how much more (or less) data there is in the communication.

At login, clients may specify a requested packet size as part of the LOGIN message stream. This
identifies the size used to break large messages into different packets. Server acknowledgment of
changes in the negotiated packet size is transmitted back to the client via the ENVCHANGE token

stream, described in section 2.2.7.10 . The negotiated packet size is the maximum value that can be
specified in the Length packet header field described in section 2.2.3.1.3 .

2.2.3.1 Packet Header

To implement messages on top of existing, arbitrary transport layers, a packet header is included as
part of the packet. The packet header precedes all data within the packet. It is always 8 bytes in
length. Most importantly, the buffer header states the Type and Length attributes of the entire
packet.

The subsections under this section provide a detailed description of each item within the packet

header.

2.2.3.1.1 Type

Type defines the type of message. Type is a 1 -byte unsigned char . Types are as follows.

Value Description

Buffer

data?

1 SQL batch. This can be any language that the server understands. Yes

2 Login. Yes

3 RPC. Yes

4 Tabular result. This indicates a stream that contains the server response to a

client request.

Yes

5 Unused. -

6 Attention signal. No

7 Bulk load data. This type is used to send binary data to the server. Yes

8-13 Unused. -

14 Transaction manager requ est. Yes

18 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Value Description

Buffer

data?

15 Unused. -

16 Unused. -

17 SSPI message. Yes

18 Pre- login message. Yes

If an unknown Type is specified, the message receiver SHOULD disconnect the connection. If a valid
Type is specified, but is unexpected (according to section 3.3.5), the message receiver SHOULD
disconnect the connection. This applies to both the client and the server. For example, the server
could disconnect the connection if the server receives a message with Type equal to 2 when the
connection is already logged in.

The following table highlights which messages, as described previously in sections 2.2.1 and 2.2.2 ,

correspond to which packet header type.

Message type Client or server message Buffer header type

Pre- login Client 18

Login Client 2+17 (if Integrated authentication)

SQL batch Client 1

Bulk load Client 7

RPC Client 3

Attention Client 6

Transaction manager request Client 14

Pre- login response Server 4

Login response Server 4

Row data Server 4

Return status Server 4

Return parameters Server 4

Response completion (DONE) Server 4

Error and info messages Server 4

Attention acknowledgement Server 4

2.2.3.1.2 Status

Status is used to indicate the message state. Status is a 1 -byte unsigned char . The following
Status bit flags are defined.

19 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Value Description

0x00 "Normal" message.

0x01 End of message (EOM). EOM indicates the last packet of the message.

0x02 From client to server. Ignore this event (0x01 MUST also be set).

All other bits are not used and must be ignored.

2.2.3.1.3 Length

Length is the size of the packet, including the 8 bytes in the packet header. It is the number of
bytes from the start of this header to the start of the next packet header. Length is a 2 -byte,

unsigned short int and is represented in network byte order (big - endian).

2.2.3.1.4 SPID

SPID is the process ID on the server, corresponding to the current connection. This information is
sent by the server to the client and is useful for identifying which thread on the server is sent to the
TDS 4.2 packet. It is provided for debugging purposes. The client MAY send the SPID value to the
server. If the client does not, then a value of 0x0000 SHOULD be sent to the server. T his is a 2 -byte

value and is represented in network byte order (big -endian).

2.2.3.1.5 PacketID

PacketID is used for numbering message packets that contain data in addition to the packet
header. PacketID is a 1 -byte, unsigned char . Each time packet data is sent, the value of PacketID
is incremented by 1, up to 255 (using modulo 256). This allows the receiver to track the sequence
of TDS 4.2 packets for a given message. The value is currently ignored by the server.

2.2.3.1.6 Window

This 1 -byte item is currently not used. This byte SHOULD be set to 0x00 and SHOULD be ignored by
the receiver.

2.2.3.2 Packet Data

Packet data for a given message follows the packet header (for messages that contain packet data,

see Type in section 2.2.3.1.1). As previously stated, a message can span more than one packet.
Because each new message must always begin within a new packet, a message that spans more
than one packet occurs only if the data to be sent exceeds the maximum packet data size, which is
computed as negotiated packet size (8 bytes), where the 8 bytes represent the size of the packet
header.

If a stream spans more than one packet, the EOM bit of the packet header Status code must be set

to 0 (zero) for every packet header. The EOM bit must be set to 1 in the last packet to signal that
the stream ends. In addition, the PacketID field of subsequent packets must be incremented as

defined in section 2.2.3.1.5 .

2.2.4 Packet Data Token and Tokenless Data Streams

The messages contained in packet data that pass between the client and the server may be one of
two types: a token stream or a tokenless stream. A token stream consists of one or more tokens,

each followed by some token -specific data. A token is a 1 -byte identifier used to describe the data

%5bMS-GLOS%5d.pdf

20 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

that follows it (for example, it contains tok en data type, token data length, and so on). Tokenless
streams are typically used for simple messages. Messages that require a more detailed description

of the data within them are sent as a token stream. The following table highlights which messages,
as d escribed in sections 2.2.1 and 2.2.2 , use token streams and which do not.

Message type Client or server message Token stream used

Pre- login Client No

Login Client No

SQL batch Client No

Bulk load Client Yes

RPC Client Yes

Attention Client No

Transaction manager request Client No

Login response Server Yes

Row data Server Yes

Return status Server Yes

Return parameters Server Yes

Response completion (DONE) Server Yes

Error and info messages Server Yes

Attention acknowledgement Server No

2.2.4.1 Tokenless Stream

As shown in the previous section, some messages do not use tokens to describe the data portion of
the data stream . In these cases, all the information required to describe the packet data is
contained in the packet header. This is referred to as a tokenless stream and is essentially just a
collection of packets and data.

2.2.4.2 Token Stream

More complex messages (for example, row data) are constructed using tokens. As previously
described, a token consists of a 1 -byte identifier, followed by token -specific data.

2.2.4.2.1 Token Definition

There are three classes of token definitions:

Á Zero -Length Token (xx01xxxx)

Á Fixed -Length Token (xx11xxxx)

Á Variable -Length Tokens (xx10xxxx)

21 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

The following sections specify the bit pattern of each token class, various extensions to this bit
pattern for a given token class, and a description of its functions.

2.2.4.2.1.1 Zero - Length Token (xx01xxxx)

This class of token is not followed by a length specification. There is no data associated with the
token. A zero - length token always has the following bit sequence.

0 1 2 3 4 5 6 7

x x 0 1 x x x x

In this table, x denotes a bit position that can contain the bit value 0 or 1.

2.2.4.2.1.2 Fixed - Length Token (xx11xxxx)

This class of token is followed by 1, 2, 4, or 8 bytes of data. No length specification follows this

token, because the length of its associated data is encoded in the token itself. The different fixed -
length token definitions take the form of one of the following bit sequences, depending on whether
the token is followed by 1, 2, 4, or 8 bytes of data.

0 1 2 3 4 5 6 7 Description

x x 1 1 0 0 x X Token is followed by 1 byte of data.

x x 1 1 0 1 x X Token is followed by 2 bytes of data.

x x 1 1 1 0 x X Token is followed by 4 bytes of data.

x x 1 1 1 1 x X Token is followed by 8 bytes of data.

In this table, x denotes a bit position that can contain the bit value 0 or 1.

Fixed - length tokens are use by the following data types: bigint , int , smallint , tinyint , float , real ,
money , smallmoney , datetime , smalldatetime , and bit . The type definition is always
represented in COLFMT and ALTFMT data streams as a single byte type. For additional details, see
section 2.2.5.3.1 .

2.2.4.2.1.3 Variable - Length Token (xx10xxxx)

This class of token definition is followed by a length specification. The length (in bytes) is included in
the token itself as a length value (see the Length rule of the COLINFO token stream). The various
different variable - length token definitions have the following bit sequence:

0 1 2 3 4 5 6 7 Description

0 0 1 0 0 1 x X Length of data is represented by 1 byte.

0 0 1 0 1 0 X X Length of data is represented by 1 byte.

0 0 1 0 1 1 X X Length of data is represented by 1 byte.

0 1 1 0 0 1 X X Length of data is represented by 1 byte.

0 1 1 0 1 0 X X Length of data is represented by 1 byte.

22 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

0 1 2 3 4 5 6 7 Description

0 1 1 0 1 1 X x Length of data is represented by 1 byte.

1 0 1 0 x x X x Length of data is represented by 2 bytes.

1 1 1 0 x x X x Length of data is represented by 2 bytes.

0 0 1 0 0 0 X x Length of data is represented by 4 bytes.

0 1 1 0 0 0 X x Length of data is represented by 4 bytes.

In the preceding table, x denotes a bit position that can contain the bit value 0 or 1.

There are two data types that are of variable length. These are real variable - length data types like
char and binary and nullable data types that are either their normal fixed - length, corresponding to

their type_info, or a special length if NULL.

 Text and image data types have values that are either NULL or 1 to 2 gigabytes (0x00000000 to

0x7FFFFFFF bytes) in length.

A data type has a length of 0 if it is NULL.

2.2.4.3 DONE and Attention Tokens

The DONE token marks the end of the response for each executed SQL statement. Based on the

SQL statement and the context in which it is executed, the server may generate the DONEPROC or
DONEINPROC token instead.

The attention signal is sent using the out -of -band write operation provided by the network library.
An out -of -band write provides the ability to send the attention signal whether the sender is in the
middle of sending or processing a message or simply sitt ing idle. If the out -of -band operation is not
supported, the clients MUST simply read and discard all of the data from the server until the final

DONE token is read.

2.2.4.4 Token Stream Examples

The following two examples highlight token stream communication. The packaging of these token
streams into packets is not shown in this section. Actual TDS 4.2 network data samples are available
in section 4.

2.2.4.4.1 Sending a SQL Batch

In this example, a SQL statement is sent to the server, and the results are sent to the client. The
SQL statement is as follows.

SQLStatement = select name, empid from employees

 update employees set salary = salary * 1.1

 select name from employees where department = 'HR'

Client: SQLStatement

Server: COLNAME data stream

 COLFMT data stream

 ROW data stre am

23 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 .

 .

 ROW data stream

 DONE data stream (with DONE_COUNT & DONE_MORE

 bits set)

 DONE data stream (for UPDATE, with DONE_COUNT &

 DONE_MORE bits set)

 COLNAME data stream

 COLFMT data stream

 ROW data stream

 .

 .

 ROW data stream

 DONE data strea m (with DONE_COUNT bit set)

2.2.4.4.2 Out - of - Band Attention Signal

In this example, a SQL statement is sent to the server; however, before all the data has been
returned, an interrupt or Attention signal is sent to the server. The client reads and discards any
data received between the time the interrupt was sent and the interrupt acknowledgment was
received. The interrupt acknowledgment from the server is a bit that is set in the status field of the

DONE token.

Client: select name, e mpid from employees

Server: COLNAME data stream

 COLFMT datastream

 ROW data stream

 .

 .

 ROW data stream

Client: ATTENTION SENT

The client reads and discards any data from the server until a DONE_ATTN acknowledgment is

received.

Server: DONE data stream (with DONE_ATTN bit set)

2.2.5 Grammar Definition for Token Description

The TDS 4.2 protocol consists of a variety of messages. Each message consists of a set of bytes
transmitted in a predefined order. This predefined order, or grammar, can be specified using
Augmented Backus -Naur Form (for more details, see [RFC4234]). Details can be found in the
following subsections.

2.2.5.1 General Rules

Data structure encodings in TDS 4.2 are defined in terms of the following fundamental definitions.

 BIT : A single bit value of either 0 or 1.

http://go.microsoft.com/fwlink/?LinkId=90462

24 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

BIT = %b0 / %b1

 BYTE : An unsigned single byte (8 -bit) value. The range is 0 to 255.

BYTE = 8BIT

 BYTELEN : An unsigned single byte (8 -bit) value representing the length of the associated data.
The range is 0 to 255.

BYTELEN = BYTE

 USHORT : An unsigned 2 -byte (16 -bit) value. The range is 0 to 65535.

USHORT = 2BYTE

 LONG : A signed 4 -byte (3 2-bit) value. The range is - (2 31) to (2 31) -1.

LONG = 4BYTE

 ULONG : An unsigned 4 -byte (32 -bit) value. The range is 0 to (2 32) -1

ULONG = 4BYTE

 DWORD : An unsigned 4 -byte (32 -bit) value. The range when used as a numeric value is 0 to (2 32) -

1.

DWORD = 32BIT

 ULONGLONG : An unsigned 8 byte (64 -bit) value. The range is 0 to (2 64) -1.

ULONGLONG = 8BYTE

 UCHAR : An unsigned single byte (8 -bit) value representing a character. The range is 0 to 255.

UCHAR = BYTE

 USHORTLEN : An unsigned 2 -byte (16 -bit) value representin g the length of the associated data.
The range is 0 to 65535.

USHORTLEN = 2BYTE

 LONGLEN : A signed 4 -byte (32 -bit) value representing the length of the associated data. The

range is - (2 31) to (2 31) -1.

LONGLEN = 4BYTE

25 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 PRECISION : An unsigned single byte (8 -bit) value representing the precision of a numeric

number.

PRECISION = 8BIT

 SCALE : An unsigned single byte (8 -bit) value representing the scale of a numeric number.

SCALE = 8BIT

 GEN_NULL : A single byte (8 -bit) value representing a NULL value.

GEN_NULL = %x00

 FRESERVEDBIT : A FRESERVEDBIT is a BIT value used for padding that does not transmit

information. FRESERVEDBIT fields should be set to %b0 and must be ignored on receipt.

FRESERVEDBIT = %b0

 FRESERVEDBYTE : A FRESERVEDBYTE is a BYTE value u sed for padding that does not transmit

information. FRESERVEDBYTE fields should be set to %x00 and must be ignored on receipt.

FRESERVEDBYTE = %x00

Note All integer types are represented in the byte order requested by the client in the lInt2 field of

th e LOGIN token stream, unless otherwise specified.

2.2.5.1.1 Least Significant Bit Order

Certain tokens will possess rules that are comprised of an array of independent bits. These are

typically "flag" rules in which each bit is a flag indicating that a specific feature or option is
enabled/requested. Normally, the bit array will be arranged i n least significant bit order (or typical
array index order), meaning that the first listed flag is placed in the least significant bit position
(identifying the least significant bit as it would in an integer variable). For example, if Fn is the nth
flag, then the following rule definition:

FLAGRULE = F0 F1 F2 F3 F4 F5 F6 F7

would be observed on the wire in the natural value order F7F6F5F4F3F2F1F0.

If the rule contains 16 bits, then the order of the bits observed on the wire will follow the little -
endian byte ordering. For example:

FLAGRULE = F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

 F14 F15

will have the following order on the wire: F7F6F5F4F3F2F1F0 F15F14F13F12F11F10F9F8.

%5bMS-GLOS%5d.pdf
%5bMS-GLOS%5d.pdf

26 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

2.2.5.2 Data Stream Types

2.2.5.2.1 Unknown - Length Data Streams

Unknown - length data streams are used by some tokenless data streams. It is a stream of bytes.
The number of bytes within the data stream is defined in the packet header as specified in section
2.2.3.1 .

BYTESTREAM = *BYTE

2.2.5.2.2 Variable - Length Data Streams

Variable - length data streams consist of a stream of characters or a stream of bytes. The two types
are similar in that they both have a length rule and a data rule.

 Characters

Variable - length character streams are defined by a length field followed by the data itself. There are
three types of variable - length character streams, each dependent on the size of the length field (for
example, a BYTE, USHORT, or LONG). In this section, "value" refers to the value of the variable, not

the size of the variable type (for example, not LONGLEN but the value stored in the variable "x" of
type LONGLEN). If the length field is zero, no data follows the length field.

B_VARCHAR = BYTELE N *CHAR

US_VARCHAR = USHORTLEN *CHAR

Note that the lengths of B_VARCHAR and US_VARCHAR are given in bytes.

 Generic Bytes

Similar to the variable - length character stream, variable - length byte streams are defined by a

length field followed by the d ata itself. There are three types of variable - length byte streams, each
dependent on the size of the length field (for example, a BYTE, USHORT, or LONG). If the value of
the length field is zero, then no data follows the length field.

B_VARBYTE = BYTELEN *BYTE

US_VARBYTE = USHORTLEN *BYTE

L_VARBYTE = LONGLEN *BYTE

2.2.5.2.3 Data - Type - Dependent Data Streams

Some messages contain variable data types. The actual type of a given variable data type is
dependent on the type of the data being sent within the message as defined in the TYPE_INFO rule.

For example, the RPCRequest message contains the TYPE_INFO and TYPE_VARBYTE rules. These
two rules contain data of a type that is dependent on the actual type used in the value of the
FIXEDLENTYPE or VARLENTYPE rules of the TYPE_INFO rule.

Data - type -depend ent data streams occur in three forms: integers, fixed bytes, and variable bytes.

27 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 Integers

Data - type -dependent integers may be either a BYTELEN or LONGLEN in length. This length is

dependent on the TYPE_INFO associated with the message. If the data type (for example, the
FIXEDLENTYPE or VARLENTYPE rule of the TYPE_INFO rule) is of type TEXTTYPE and IMAGETYPE,

the integer length is LONGLEN. For all other data types, the integer length is BYTELEN.

TYPE_VARLEN = BYTELEN

 /

 LONGLEN

 Fixed and Variable Bytes

The data type to be used in a data - type -dependent byte stream is defined by the TYPE_INFO rule
associated with the message.

For variable - length types, the TYPE_VARLEN value defines the length of the data to fo llow. As

described earlier, the TYPE_INFO rule defines the type of TYPE_VARLEN (for example BYTELEN or

LONGLEN).

For fixed - length types, the TYPE_VARLEN rule is not present. In these cases the number of bytes to
be read is determined by the TYPE_INFO rule (for example, if "INT2TYPE" is specified as the value
for the FIXEDLENTYPE rule of the TYPE_INFO rule, 2 bytes should be read, because "INT2TYPE" is
always 2 bytes in length.) See section 2.2.5.3 for mor e details.

The following data may be a stream of bytes or a NULL value. The GEN_NULL rule applies to all
types.

TYPE_VARBYTE = GEN_NULL

 / ([TYPE_VARLEN] *BYTE)

2.2.5.3 Data Type Definitions

The subsections within this section describe the different sets of data types and how they are
categorized. Specifically, data values are interpreted and represented in association with their data
type. Details about each data type categorization are descr ibed in the following sections.

2.2.5.3.1 Fixed - Length Data Types

Note that these fixed - length data types are all 1 byte in length, as specified in section 2.2.4.2.1.2 .

NULLTYPE = %x1F ; Null (no data associated with this type)

INT1TYPE = %x30 ; TinyInt (1 byte data representation)

BITTYPE = %x32 ; Bit (1 byte data representation)

INT2TYPE = %x34 ; SmallInt (2 byte data represe ntation)

INT4TYPE = %x38 ; Int (4 byte data representation)

DATETIM4TYPE = %x3A ; SmallDateTime (4 byte data

 representation)

FLT4TYPE = %x3B ; Real (4 byte data representation)

MONEYTYPE = %x3C ; Money (8 byte data representation)

DATETIMETYPE = %x3D ; DateTime (8 byte data representation)

FLT8TYPE = %x3E ; Float (8 byte data representation)

28 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

MONEY4TYPE = %x7A ; SmallMoney (4 byte data representation)

INT8TYPE = %x7F ; BigInt (8 byte data representation)

FIXEDLENTYPE = NULLTYPE

 \

 INT1TYPE

 \

 BITTYPE

 \

 INT2TYPE

 \

 INT4TYPE

 \

 DATETIM4TYPE

 \

 FLT4TYPE

 \

 MONEYTYPE

 \

 DATETIMETYPE

 \

 FLT8TYPE

 \

 MONEY4TYPE

 \

 INT8TYPE

2.2.5.3.2 Variable - Length Data Types

The data type token values defined in this section have a length value associated with the data type,
because the data value corresponding to these data types is represented by a variable number of
bytes. The token values defined in this section follow the rule defined in section 2.2.4.2.1.3 .

GUIDTYPE = %x24 ; UniqueIdentifier

INTNTYPE = %x26 ; (see below)

DECIMALTYPE = %x37 ; Decimal

NUMERICTYPE = %x3F ; Numeric

BITNTYPE = %x68 ; (see below)

DECIMALN = %x6A ; Decimal

NUMERICNTYPE = %x6C ; Numeric

FLTNTYPE = %x6D ; (see below)

MONEYNTYPE = %x6E ; (see below)

DATETIMNTYPE = %x6F ; (see below)

CHARTYPE = %x2F ; Char

VARCHARTYPE = %x27 ; VarChar

BINARYTYPE = %x2D ; Binary

VARBINARYTYPE = %x25 ; VarBinary

TEXTTYPE = %x23 ; Text

IMAGETYPE = %x22 ; Image

BYTELEN_TYPE = GUIDTYPE

 /

 INTNTYPE

 /

 DECIMALTYPE

29 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 /

 NUMERICTYPE

 /

 BITNTYPE

 /

 DECIMALN

 /

 NUMERICNTYPE

 /

 FLTNTYPE

 /

 MONEYNTYPE

 /

 DATETIMNTYPE

 /

 CHARTYPE

 /

 VARCHARTYPE

 /

 BINARYTYPE

 /

 VARBINARYTYPE ; the length value associated

 with these data types is

 specified within a BYTE

For MONEYNTYPE, the only valid lengths are 0x04 and 0x08, which map to smallmoney and
money SQL Server data types respectively.

For DATETIMNTYPE, the only valid lengths are 0x04 and 0x08, which map to smalldatetime and

datetime SQL Server data types respectively.

For INTNTYPE, the only valid lengths are 0x01, 0x02, 0x04, and 0x08, which map to tinyint ,
smallint , int , and bigint SQL Server data types respectively.

For FLTNTYPE, the only valid lengths are 0x04 and 0x08, which map to 7 -digit precision float and
15 -digit precision float SQL Server data types respectively.

For GUIDTYPE, the only valid lengths are 0x10 for non -NULL instances and 0x00 for NULL instances.

For BITNTYPE, the only valid lengths are 0x01 for non -NULL instances and 0x00 for NULL instances.

Exceptions are thrown when invalid lengths are presented to the server during BulkLoadBCP and
RPC requests.

LONGLEN_TYPE = IMAGETYPE

 /

 TEXTTYPE ; the length value associated with

 these data types is specified

 within a LONG

VARLENTYPE = BY TELEN_TYPE

 /

 LONGLEN_TYPE

30 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Nullable values are returned using the INTNTYPE, BITNTYPE, FLTNTYPE, GUIDTYPE, MONEYNTYPE,

and DATETIMNTYPE tokens, which will use the length byte to specify the length of the value or

GEN_NULL as appropriate.

2.2.5.4 Data Type Details

The subsections within this section specify the formats in which values of system data types are
serialized in TDS.

2.2.5.4.1 System Data Type Values

The subsections within this section specify the formats in which values of various common system
data types are serialized in TDS.

2.2.5.4.1.1 Integers

All integer types are represented in reverse byte order (little -endian) unless otherwise specified.
Each integer takes a whole number of bytes as follows:

bit: 1 byte

tinyint: 1 byte

smallint: 2 bytes

int: 4 bytes

bigint: 8 bytes

2.2.5.4.1.2 Timestamp

timestamp/rowversion is represented as an 8 -byte binary sequence with no particular
interpretation.

2.2.5.4.1.3 Character and Binary Strings

See Variable -Length Data Types (section 2.2.5.3.2).

2.2.5.4.1.4 Fixed - Point Numbers

smallmoney is represented as a 4 -byte signed integer. The TDS value is the smallmoney value
multiplied by 10 4.

money is represented as an 8 -byte signed integer. The TDS value is the money value multiplied by
10 4. The 8 -byte signed integer itself is represented in the following sequence:

Á One 4 -byte integer that represents the more significant half.

Á One 4 -byte integer that represents the less significant half.

2.2.5.4.1.5 Floating - Point Numbers

float (n) follows the 32 -bit [IEEE754] binary specification when n <= 24 and the 64 -bit [IEEE754]
binary specification when 25 <= n <= 53.

http://go.microsoft.com/fwlink/?LinkId=89903
http://go.microsoft.com/fwlink/?LinkId=89903

31 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

2.2.5.4.1.6 Decimal/Numeric

Decimal or Numeric is defined as decimal (p, s) or numeric (p, s), where p is the precision and s is
the scale. The value is represented in the following sequence:

Á One 1 -byte unsigned integer that represents the sign of the decimal value as follows:

Á 1 means negative.

Á 0 means nonnegative.

Á One 4 - , 8 - , 12 - , or 16 -byte signed integer that represents the decimal value multiplied by 10 s.

The maximum size of this integer is determined based on p as follows:

Á 4 bytes if 1 <= p <= 9.

Á 8 bytes if 10 <= p <= 19.

Á 12 bytes if 20 <= p <= 28.

Á 16 bytes if 29 <= p <= 38.

The actual size of this integer could be less than the maximum size, depending on the value. In all
cases, the intege r part MUST be 4, 8, 12, or 16 bytes.

2.2.5.4.1.7 GUID

uniqueidentifier is represented as a 16 -byte binary sequence with no specific interpretation.

2.2.5.4.1.8 Date/Times

smalldatetime is represented in the following sequence:

Á One 2 -byte unsigned integer that represents the number of days since January 1, 1900.

Á One 2 -byte unsigned integer that represents the number of minutes elapsed since 12 A.M. that

day.

datetime is represented in the following sequence:

Á One 4 -byte signed integer that represents the number of days since January 1, 1900. Negative

numbers are al lowed to represent dates since January 1, 1753.

Á One 4 -byte unsigned integer that represents the number of one three -hundredths of a second

(300 counts per second) elapsed since 12 A.M. that day.

2.2.5.5 Type Info Rule Definition

The TYPE_INFO rule applies to several messages used to describe column information. For columns

of fixed data length, the type is all that is required to determine the data length. For columns of a
variable - length type, TYPE_VARLEN defines the length of the data contained within the column.

PRECISION and SCALE must occur if the type is NUMERIC, NUMERICN, DECIMAL, or DECIMALN.

TYPE_INFO = FIXEDLENTYPE

 /

32 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 (VARLENTYPE, TYPE_VARLEN [PRECISION SCALE])

2.2.5.6 Data Buffer Stream Tokens

The tokens defined as follows are used as part of the token -based data stream. For more details
about the way each token is used inside the data stream, see section 2.2.6 .

ALTFMT_TOKEN = %xA8

ALTNAME_TOKEN = %xA7

ALTROW_TOKEN = %xD3

COLFMT_TOKEN = %xA1

COLINFO_TOKEN = %xA5

COLNAME_TOKEN = %xA0

DONE_TOKEN = %xFD

DONEPROC_TOKEN = %xFE

DONEINPROC_TOKEN = %xFF

ENVCHANGE_TOKEN = %xE3

ERROR_TOKEN = %xAA

INFO_TOKEN = %xAB

LOGINACK_TOKEN = %xAD

OFFSET_TOKEN = %x78

ORDER_TOKEN = %xA9

RETURNSTATUS_TOKEN = %x79

RETURNVALUE_TOKEN = %xAC

ROW_TOKEN = %xD1

SSPI_TOKEN = %xED

TABNAME_TOKEN = %xA4

2.2.6 Packet Header Message Type Stream Definition

2.2.6.1 Bulk Load BCP

 Stream Name

BulkLoadBCP

 Stream Function

Describes the format of bulk - loaded data with INSERT BULK.

 Stream Comments

Á The packet header type is 0x07.

Á This message sent to the server contains bulk data to be inserted. The client MUST have

previously notified the server where this data is to be inserted. For more information about how
to notify the server, see [MSDN -BULKINSERT] .

Á A sample BulkLoadBCP message is in sectio n 4.10 .

 Stream - Specific Rules

http://go.microsoft.com/fwlink/?LinkId=112204

33 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Length = USHORT

ImageTextColDim = USHORT

TiFlag = BYTE

ColId = BYTE

Reserved = USHORT ; The server SHOUL D ignore

 this field.

NumVarCols = BYTE

RowNum = BYTE

FixedColData = *BYTE

Paddings = *BYTE

RowLen = USHORT

VarColData = *BYTE

Adjust = 1*BYTE

Offset = <NumVarCols+1>BYTE

ColData = NumVarCols

 RowNum

 *FixedColData

 Paddings

 RowLen

 * VarColData

 Adjust

 Offset

RowData = Length

 ColData

 *(ImageTextColLenDim

 TiFlag

 ColId

 Reserved

 TYPE_VARBYTE) ;The TYPE_VARBYTE for the

 type specified by TiFlag.

 Stream Definition

BulkLoadBCP = 1*RowData

 Stream Parameter Details

Stream parameter details are described in the following table.

Parameter Description

Length The actual length, in bytes, of the ColData stream. The length does not include the

Length field itself. The value MUST be greater than 0.

ImageTextColDim The delimiter to mark the beginning of a text or image column. The value MUST be

%x00 %x00.

TiFlag The flag indicates the type of column. It MUST be either TEXTTYPE or IMAGETYPE.

ColId It contains the Column ID for the text/image column. ColId is associated only with

variable - length columns. It starts from the first variable column with ColId = %xFF

and decreases by one for each eligible column.

NumVarCols Number of variable - length col umns.

RowNum The row number of the current row. The TDS 4.2 server SHOULD ignore this field.

34 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Parameter Description

RowLen The length of the current ColData field. The value MUST be identical to the Length

field in RowData.

FixedColData The actual data for a fixed - length co lumn. It repeats for all fixed - length columns in

the specific table for the operation, in the order defined in the table.

Paddings Padding data. The server SHOULD ignore this field. When parsing the data, the server

SHOULD get FixedColData from the beginn ing of ColData and get VarColData based

on Offset and Adjust, with the assumption that Offset is the last field in ColData.

VarColData The actual data for a variable - length column. It repeats for all variable - length

columns, excluding text and image columns, in the specific table for the operation. It

contains only the data part of TYPE_VARBYTE defined for the corresponding type. The

leng th of VarColData is determined by Adjust and Offset fields as described in the

following paragraphs. This field is skipped if the data for a column is NULL; that is,

the length for a column is calculated to be 0.

Adjust The n - th Adjust byte, counted from right backward (n>=1), contains the column

number of the first variable length column which starts in the (n+1) -st 256 byte block

of the record. The Adjust field has as many bytes as the number of 256 byte blocks

in the ColData. Hence, the rightmost Adj ust byte contains the column number of the

first variable length column whose offset starts in the 2nd block. The next Adjust byte

contains the column number of the first variable length column whose offset starts in

the 3rd block, and do on. The last (or only) Adjust byte contains NumVarCols +1.

Offset It contains the starting offset for each variable - length column. These bytes are in

reverse order of the column creation order; that is, the last offset byte is for the first

variable column. This byte, a s adjusted by the Adjust table bytes, is the starting

offset for the column's data in ColData. The length is determined by calculating the

offset of the next column (previous offset byte) minus the starting offset. If the

length is 0, the column is NULL. T he leftmost offset byte contains the offset to the

end of ColData.

2.2.6.2 Bulk Load Update Text/Write Text

 Stream Name

BulkLoadUTWT

 Stream Function

Describes the format of bulk - loaded data with UPDATETEXT or WRITETEXT. The length is the length
of the data followed by the data itself.

 Stream Comments

Á The packet header type is 0x07.

Á This message sent to the server contains bulk data to be inserted. The client MUST have

previously notified the server with a WRITETEXT BULK [MSDN -WRITETEXT] or U PDATETEXT BULK
[MSDN -UPDATETEXT] SQL statement.

Á The server returns a RETURNVALUE token containing the new timestamp for this column.

 Stream - Specific Rules

http://go.microsoft.com/fwlink/?LinkId=190252
http://go.microsoft.com/fwlink/?LinkId=190253

35 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

BulkData =L_VARBYTE

 Sub Message Defin ition

BulkLoadUTWT = BulkData

 Stream Parameter Details

Stream parameter details are described in the following table.

Parameter Description

BulkData Contains the BulkData length and BulkData data within the L_VARBYTE.

2.2.6.3 LOGIN

 Stream Name

LOGIN

 Stream Function

Defines the login record rules for use with SQL Server.

 Stream Comments

Á The packet header type is 0x02.

Á The length of a LOGIN record must be larger than 563 bytes and must be smaller than 573

bytes.

 Stream - Specific Rules

HostName = 30BYTE

cbHostName = BYTE

UserName = 30BYTE

cbUserName = BYTE

Password = 30BYTE

cbPassword = BYTE

HostProc = 8BYTE

cbHostProc = BYTE

AppType = 6BYTE

lInt2 = BYTE

lInt4 = BYTE

lChar = BYTE

lFloat = BYTE

lUseDB = BYTE

lDumpLoad = BYTE

lInterface = BYTE

lType = BYTE

lDBLIDFlags = BYTE

AppName = 30BYTE

cbAppName = BYTE

ServerName = 30BYTE

36 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

cbServerName = BYTE

RemotePassword = 255BYTE

cbRemotePassword = BYTE

TDSVersion = DWORD

ProgName = 10BYTE

cbProgName = BYTE

ProgVersion = DWORD

Language = 30BYTE

cbLanguage = BYTE

SetLanguage = BYTE

PacketSize = 6BYTE

cbPacketSize = BYTE

Padding = *8BYTE

 Stream Definition

LOGIN = HostName

 cbHostName

 UserName

 cbUserName

 Password

 cbPassword

 HostProc

 16FRESERVEDBYTE

 AppType

 cbHostProc

 lInt2

 lInt4

 lChar

 lFloat

 FRESERVEDBYTE

 lUseDB

 lDumpLoad

 lInterface

 lType

 6FRESERVEDBYTE

 lDBLIBFlags

 AppName

 cbAppName

 ServerName

 cbServerName

 RemotePassword

 cbRemotePassword

 TDSVersion

 ProgName

 cbProgName

 ProgVersion

 3FRESERVEDBYTE

 Language

 cbLanguage

 SetLang

 45FRESERVEDBYTE

 Packet Size

 cbPacketSize

 Padding

 Stream Parameter Details

37 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Stream parameter details are described in the following table.

Parameter Description

HostName Name of the host.

UserName The user ID used to validate access to the server.

Password The password used to validate access to the server.

HostProc The host process identification in hex format.

AppType The unique client ID, for example: MAC address for the client machine.

lInt2 The byte order for all integer values exchanged between the client and the server

unless otherwise specified.

Á 2 The first byte is the most significant byte (680x0), big -endian

Á 3 The first byte is the least significant byte (VAX, 80x86), lit tle -endian

lInt4 The type of int4 for the client. The server should ignore this field.

lChar The character set used on the client:

Á 6 CHARSET_ASCII

Á 7 CHARSET_EBCDIC

lFloat The type of floating point representation used by the client.

Á 5 FLO AT_VAX

Á 10 FLOAT_IEEE_754

Á 11 ND5000

lUseDB Set if the client desires warning messages on execution of the USE SQL statement. If

this flag is not set, the client is not informed when the database changes.

Á 0 USE_DB_OFF

Á 1 USE_DB_ON

lDumpLoad Set if dump/load or BCP capabilities are needed by the client.

Á 0 DUMPLOAD_ON

Á 1 DUMPLOAD_OFF

lInterface The type of SQL language that the client will send to the server. Only 0 and 1 are

supported by SQL Server.

Á 0 LDEFSQL (Default language. For SQL Server; that is, Transact -SQL)

Á 1 LXSQL (Explicitly referencing Transact -SQL)

38 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Parameter Description

lType The source of the connection.

Á 0 Normal user connecting directly.

Á 2 User login through another server.

Á 4 Replication login.

Á 8 Integrated sec urity user login. If this type is used, USERNAME and

PASSWORD MUST be ignored.

lDBLIBFlags Indicates whether SSPI negotiation is required.

Á 0x01 SSPI negotiation is required.

AppName The name of the application.

ServerName The network name for the server the client is connecting to.

RemotePassword Remote password. The server should ignore the field.

TDSVersion The TDS version of the client. For TDS 4.2, the value is 0x04020000 and is sent as

big -endian.

The value should b e ignored by the server. If the following two conditions are met,

TDS 4.2 should be used for communication between the client and the server:

Á The packet header of the LOGIN data stream is 0x02.

Á The lowest byte of ProgVersion is greater than or equal to 0x06.

ProgName The name of the client program.

ProgVersion The version of the client program.

Language The name of the initial language to be used once login is complete.

SetLang A flag to request notification of language changes.

Á 0 = SET_LANG_OFF

Á 1 = SET_LANG_ON

PacketSize The desired packet size being requested by the client.

Padding Padding data to the login record. The number of bytes can be any number between 0

and 8. The se rver should ignore this field.

 Login Data Validation Rules

All fields except Padding have a fixed length. Each data field has a corresponding length field that

indicates how many bytes of the data field should be used. For example, cbHostName indicates h ow
many bytes of HostName should be used. The remaining bytes of the data field should be ignored.

39 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

2.2.6.4 PRELOGIN

 Stream Name

PRELOGIN

 Stream Function

A message sent by the client to set up context for login. The server responds to a client PRELOGIN
message with a message of packet header type 0x04 and with the packet data containing a
PRELOGIN structure.

This message stream is also used to wrap the SSL handshake payload if encrypt ion is needed. In
this scenario, where PRELOGIN message is transporting the SSL handshake payload, the packet
data is simply the raw bytes of the SSL handshake payload.

 Stream Comments

Á The packet header is type 0x12.

Á A sample PRELOGIN message is shown in section 4.1 .

 Stream - Specific Rules

UL_VERSION = ULONG ; version of the sender

US_SUBBUILD = USHORT ; sub - build number of the sender

B_FENCRYPTION = BYTE

B_INSTVALIDITY = *BYTE / %x00 ; name of SQL Server instance

 ; or just %x00

UL_THREADID = ULONG ; client application thread id

 ; used for debugging purposes

TERMINATOR = % xFF ; signals end of PRELOGIN message

PL_OPTION_DATA = *BYTE ; actual data for the option

PL_OFFSET = USHORT ; big endian

PL_OPTION_LENGTH = USHORT ; big endian

PL_OPTION_TOKEN = BYTE ; token value representing the option

PRELOGIN_OPTION = (PL_OPTION_TOKEN

 PL_OFFSET

 PL_OPTION_LENGTH)

 /

 TERMINATOR

SSL_PAYLOAD = *BYTE ; SSL handshake raw payload

 Stream Definition

PRELOGIN = (*PRELOGIN_OPTION

 *PL_OPTION_DATA)

 /

 SSL_PAYLOAD

PL_OPTION_TOKEN is described in the following table.

40 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

PL_OPTION_TOKEN Value Description

VERSION 0x00 PL_OPTION_DATA = UL_VERSION

US_SUBBUILD

The server may use the VERSION sent by the client to the server for

debugging purposes or may ignore the value. The client may use the

VERSION returned from the server to determine which features SHOULD

be enabled or disabled. The client SHOULD do this onl y if it can

determine whether a feature is supported by the current version of the

database.

ENCRYPTION 0x01 PL_OPTION_DATA = B_FENCRYPTION

INSTOPT 0x02 PL_OPTION_DATA = B_INSTVALIDITY

THREADID 0x03 PL_OPTION_DATA = UL_THREADID

This value SHOULD be empty when being sent from the server to the

client.

TERMINATOR 0xFF Termination token.

Notes

Á PL_OPTION_TOKEN VERSION MUST be the first token sent as part of PRELOGIN.

Á TERMINATOR does not include length and offset specifiers.

Á If encr yption is agreed upon during pre - login, SSL negotiation between client and server happens

immediately after the PRELOGIN packet. Then, login proceeds. For additional information, see
section 3.3.5.1 .

Á A PRELOGIN message that wraps the SSL_PAYLOAD occurs only after the initial PRELOGIN

message containing the PRELOGIN_OPTION and PL_OPTION_DATA information.

 Encryption

During the pre - login handshake, the client and the server negotiate the wire encryption to be used.
The possible encryption option values are described in the following table.

Setting Value Description

ENCRYPT_OFF 0x00 Encryption is available but off.

ENCRYPT_ON 0x01 Encryption is available and on.

ENCRYPT_NOT_SUP 0x02 Encryption is not available.

ENCRYPT_REQ 0x03 Encryption is required.

The client sends the server the value ENCRYPT_OFF, ENCRYPT_NOT_SUP, or ENCRYPT_ON.

Depending upon whether the server has encryption available and enabled, the server responds with
an ENCRYPTION value in the response according to the following table.

41 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Client

Server

ENCRYPT_OFF Server ENCRYPT_ON Server ENCRYPT_NOT_SUP

ENCRYPT_OFF ENCRYPT_OFF ENCRYPT_REQ ENCRYPT_NOT_SUP

ENCRYPT_ON ENCRYPT_ON ENCRYPT_ON ENCRYPT_NOT_SUP

(connection terminated)

ENCRYPT_NOT_SUP ENCRYPT_NOT_SUP ENCRYPT_REQ

(connection terminated)

ENCRYPT_NOT_SUP

The server requires the client to behave in the manner that is described in the following table.

Client

Value returned

from server is

ENCRYPT_OFF

Value

returned from

server is

ENCRYPT_ON

Value returned

from server is

ENCRYPT_REQ

Value ret urned from

server is

ENCRYPT_NOT_SUP

ENCRYPT_OFF Encrypt login

packet only

Encrypt entire

connection

Encrypt entire

connection

No encryption

ENCRYPT_ON Error

(connection

terminated)

Encrypt entire

connection

Encrypt entire

connection

Error (connection

terminated)

ENCRYPT_NOT_SUP Invalid response

(connection

terminated)

Invalid

response

(connection

terminated)

Error (connection

terminated)

No encryption

If the client and server negotiate to enable encryption, an SSL handshake takes place immediately
after the initial PRELOGIN/table response message exchange. The SSL payloads MUST be
transported as data in TDS 4.2 buffers with the message type set to 0x12 in the packet header. The
following is an example.

0x 12 01 00 4e 00 00 00 00// Buffer Header

0x 16 03 01 00 &// SSL payload

This applies to SSL traffic. Upon successful completion of the SSL handshake, the client proceeds to

send the LOGIN stream to the s erver to initiate authentication.

 Instance Name

If available, the client may send the server the name of the instance to which it is connecting as a
NULL- terminated multi -byte character set (MBCS) string in the INSTOPT option. If the string is non -

empty, the server compares it to its instance name (in the server's locale) and if there is a
mismatch, the server returns an INSTOPT option containing a byte with the value of 1 in the pre -
login table response message. Otherwise, the server returns an INSTOPT op tion containing a byte
with the value of 0. The client can then use this information for verification purposes and could

terminate the connection if the instance name is incorrect.

2.2.6.5 RPC Request

 Stream Name

42 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

RPCRequest

 Stream Function

Request to execute an RPC.

 Stream Comments

Á The packet header type is 0x03.

Á To execute an RPC on the server , the client sends an RPCRequest data stream to the server. This

is a binary stream that contains the RPC Name (or ProcID), Options, and Parameters. Each RPC

MUST be contained within a separate message and not mixed with other SQL statements.

Á A sample RPCR equest message is shown in section 4.6 .

 Stream - Specific Rules

ProcName = B_VARCHAR

fWithRecomp = BIT

fNoMetaData = BIT

OptionFlags = fWithRecomp

 fNoMetaData

 14FRESERVEDBIT

fByRefValue = BIT

fDefaultValue = BIT

StatusFlags = fByRefValue

 fDefaultValue

 6FRESERVEDBIT

ParamMetaData = B_VARCHAR

 Status Flags

 TYPE_INFO

ParamLenData = TYPE_VARBYTE

ParameterData = ParamMetaData

 ParamLenData;

BatchFlag = %x80

RPCReqBatch = ProcName

 OptionFlags

 *ParameterData

 Stream Definition

RPCRequest = RPCReqBatch

 *(BatchFlag RPCReqBatch)

 [BatchFlag]

Note that RpcReqBatch is repeated once for each RPC in the batch.

 Stream Parameter Deta ils

43 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Stream parameter details are described in the following table.

Parameter Description

ProcName The procedure name.

OptionFlags Bit flags in least significant bit order:

Á fWithRecomp: 1 if RPC is sent with the "with recompile" option.

Á fNoMetaData: 1 if no metadata will be returned for the result set.

StatusFlags Bit flags in least significant bit order:

Á fByRefValue: 1 if the parameter is passed by reference (OUTPUT parameter) or 0 if

the parameter is passed by value.

Á fDefaultValue: 1 i f the parameter being passed will be the default value.

ParameterData The parameter name length and parameter name (within B_VARCHAR), the TYPE_INFO

of the RPC data, and the type -dependent data for the RPC (within TYPE_VARBYTE).

BatchFlag Distinguishes t he start of the next RPC from another parameter within the current RPC.

The BatchFlag element MUST be present when another RPC request is in the current

batch. BatchFlag SHOULD NOT be sent after the last RPCReqBatch. If BatchFlag is

received after the last RPCReqBatch is received, the server MUST ignore it.

2.2.6.6 SQLBatch

 Stream Name

SQLBatch

 Stream Function

Describes the format of the SQL batch message.

 Stream Comments

Á The packet header type is 0x01.

Á A sample SQLBatch message is shown in section 4.4 .

 Stream - Specific Rules

SQLText = BYTESTREAM

 Stream Definition

SQLBatch = SQLText

The byte stream contains the text of the SQL batch. The following is an example of a valid value for

SQLText.

44 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Select author_id from Authors

2.2.6.7 SSPI Message

 Stream Name

SSPIMessage

 Stream Function

A request to supply data for Security Support Provider Interface (SSPI) security. Note that SSPI
uses the Simple and Protected GSS -API Negotiation Mechanism (SPNEGO) negotiation. For more
information, see [RFC4178] .

 Stream Comments

Á The packet header type is 0x11.

Á I f the client requested integrated authentication in the LOGIN message, the server MUST return

an SSPI token that contains the SSPI signature <3> of the client driver that the server is
supposed to talk to. The client MUST disconnect i f the SSPI signature does not match its local
value.

Á If the SSPI signature matches, the client MUST send the SSPI message, which contains the initial

SSPI data block (the initial SPNEGO security token), to the server. The server MUST respond with
an SSPI t oken that is the SPNEGO security token response from the server. The client MUST

respond with another SSPIMessage, after calling the SPNEGO interface with the server's
response.

Á This continues until completion or an error occurs.

Á The server completes the S SPI validation and returns a LOGINACK token to confirm the login.

Á A sample SSPIMessage message is shown in section 4.9 .

 Stream - Specific Rules

SSPIData = BYTESTREAM

 Stream Definition

SSPIMessa ge = SSPIData

 Stream Parameter Details

Stream parameter details are described in the following table.

Parameter Description

SSPIData The SSPI data. The length of the data is determined by the Length field in the header.

http://go.microsoft.com/fwlink/?LinkId=90461

45 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

2.2.6.8 Transaction Manager Request

 Stream Name

TransMgrReq

 Stream Function

Request to perform transaction coordination through a Distributed Transaction Coordinator (DTC)
implemented to the Microsoft DTC Interface Specification. For more information, see [MSDN -DTC] .

 Stream Comments

Á The packet header type is 0x0E.

Á A sample transaction manager request message is s hown in section 4.11 .

 Stream - Specific Rules

RequestType = USHORT

 Stream Definition

TransMgrReq = RequestType

 RequestPayload

RequestPayload details are described in th e following table.

 Stream Parameter Details

Stream parameter details are described in the following table.

Parameter Description

RequestType The types of transaction manager operations requested by the client are specified

below. If an unknown Type is specified, the message receiver SHOULD disconnect the

connection.

Á 0 = TM_GET_DTC_ADDRESS. Returns the DTC network address as a result set with

a single -column, single -row binary value.

Á 1 = TM_PROPAGATE_XACT. Impo rts the DTC transaction into the server and returns

a local transaction descriptor as a varbinary result set.

RequestPayload
Á For RequestType TM_GET_DTC_ADDRESS: The RequestPayload SHOULD be a zero -

length US_VARBYTE.

Á For RequestType TM_PROPAGATE_XACT: Data contains an opaque buffer used by

the server to enlist in a DTC transaction (for more information, see [MSDN -DTC]).

http://go.microsoft.com/fwlink/?LinkId=89994
http://go.microsoft.com/fwlink/?LinkId=89994

46 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

2.2.7 Packet Data Token Stream Definition

This section describes the various tokens supported in a token -based packet data stream, as
described in section 2.2.4.2 . The corresponding message types that use token -based packet data

streams are identified in the table in section 2.2.4 .

2.2.7.1 ALTFMT

 Token Stream Name

ALTFMT

 Token Stream Function

Describes the data type and length of column data that result from a SQL statementthat generates
totals.

 Token Stream Comments

Á The token value is 0xA8.

Á This token is used to tell the client the data type and length of the total column data. It describes

the format of the data found in an ALTROW data stream.

Á ALTNAME and ALTFMT data streams are grouped together. If the SQL statement generates more

than one total, there is still exactly o ne ALTNAME data stream that carries all total columns and
one ALTFMT data stream that caries all total formats for each set of totals.

Á If the SQL statement generates more than one set of totals, the ALTNAME data streams and

ALTFMT data streams arrive in pa irs (for example, ALTNAME, ALTFMT, ALTNAME, ALTFMT).

Á This stream does not occur without a preceding COLNAME and COLFMT pair, though there might

be COLINFO and TABNAME streams in between.

 Token Stream - Specific Rules

TokenType = BYTE

Length = USHORT

Id = USHORT

CAltCols = BYTE

ByCols = BYTE

Op = BYTE

Operand = BYTE

UserType = USHORT

fNullable = BIT

fCaseSen = BIT

usUpdateable = 2BIT ; 0 = ReadOnly

 ; 1 = Read/Write

 ; 2 = Unused

fIdentity = BIT

usReservedODBC = 2BIT

Flags = fNullable

 fCaseSen

 usUpdateable

 fIdentity

 FRESERVEDBIT

47 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 usReservedODBC

 8FRESERVEDBIT

TableName = B_VARCHAR

ColNum = BYTE

ComputeData = Op

 Operand

 UserType

 Flags

 TYPE_INFO

 [TableName]

The TableName field is specified only if text or image columns are included in the result set.

 Token Stream Definition

ALTFMT = TokenType

 Length

 Id

 CAltCols

 <CAltCols>ComputeData

 ByCols

 <ByCols>ColNum

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType ALTFMT_TOKEN

Length The number of bytes in the token stream excluding the TokenType and Length fields.

Id The ID of the SQL statement to which the total column formats apply. This ID lets the client

correctly interpret later ALTROW data streams.

CAltCols The number of column data in the data stream.

ByCols The number of grouping columns in the SQL statement that generates totals. For example,

the SQL clause "compute count(sales) by year, month, division, department" has four

grouping columns.

Op The type of aggregate operator.

AOPCNT = %x4B ; Count of rows (COUNT)

AOPSUM = %x4D ; Sum of the values in the rows (SUM)

AOPAVG = %x4F ; Average of the values in the rows (AVG)

AOPMIN = %x51 ; Minimum value of the rows (MIN)

AOPMAX = %x52 ; Maximum value of the rows (MAX)

Operand The col umn number, starting from 1, in the result set that is the operand for the aggregate

operator.

UserType The user type ID of the data type of the column.

Flags These bit flags are described in least significant bit order. With the exception of fNullable, all

48 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Parameter Description

of these bit flags SHOULD be set to zero. Refer to section 2.2.7.5 for a description of each

bit flag:

Á fCaseSens

Á fNullable is a bit flag; set to 1 if the column is nullable

Á usUpdateable

Á fIdentity

Á usReservedODBC

TableName See section 2.2.7.5 for a description of TableName. This field MUST never be sent, because

SQL statements that generate totals exclude TEXT/IMAGE.

ColName The column name. Contains the column name length and column name.

ColNum The column number as it appears in the COLFMT data stream. ColNum appears ByCols

times.

2.2.7.2 ALTNAME

 Token Stream Name

ALTNAME

 Token Stream Function

Describes the column names of the SQL statement that generates totals.

 Token Stream Comments

Á The token value is 0xa7.

Á This token is used to tell the client how many total columns are being returned to the client for a

particular SQL statement that generates totals. It also indicates the column names for each total
column.

Á ALTNAME and ALTFMT data streams are grouped together. If the SQL statement generates mo re

than one total, there is still exactly one ALTNAME data stream that carries all total columns and
one ALTFMT data stream that carries all total formats for each set of totals. .

Á If the SQL statement generates more than one set of totals, the ALTNAME dat a streams and

ALTFMT data streams arrive in pairs (for example, ALTNAME, ALTFMT, ALTNAME, ALTFMT).

Á This stream does not occur without a preceding COLNAME and COLFMT pair, though there might

be COLINFO and TABNAME streams in between.

 Token Stream - Specific Rules

TokenType = BYTE

Length = USHORT

Id = USHORT

ColNameData = B_VARCHAR

49 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 Token Stream Definition

ALTNAME = TokenType

 Length

 Id

 1*ColNameData

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType ALTNAME_TOKEN

Id The ID of the SQL statement that generates totals to which the total column formats

apply.

ColNameData The column name for each total column.

2.2.7.3 ALTROW

 Token Stream Name

ALTROW

 Token Stream Function

Used to send a complete row of total data, where the data format is provided by the ALTMNAME and
ALTFMT tokens.

 Token Stream Comments

Á The token value is 0xD3.

Á The ALTROW token is similar to the ROW_TOKEN, but also contains an Id field. This Id matches

an Id given in ALTFMT (one Id for each SQL statement). This provides the mechanism for
matching row data with correct SQL statements.

 Token Stream - Specific Rules

TokenType = BYTE

Id = USHORT

Data = TYPE_VARBYTE

ComputeData = Data

 Token Stream Definition

ALTROW = TokenType

 Id

 1*ComputeData

The ComputeData element is repea ted Count times (where Count is specified in ALTFMT_TOKEN).

50 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType ALTROW_TOKEN

Id The ID of the SQL statement that generates totals to which the total column formats apply.

Data The actual data for the column. The TYPE_INFO information describing the data type of this

data is given in the preceding ALTFMT_TOKEN.

2.2.7.4 COLINFO

 Token Stream Name

COLINFO

 Token Stream Function

Describes the column information in browse mode (for more information, see [MSDN -BROWSE]),
sp_cursoropen, and sp_cursorfetch.

 Token Stream Comments

Á The token value is 0xA5.

Á The TABNAME token contains the actual table name associated with COLINFO.

 Token Stream Specific Rules

TokenType = BYTE

Length = USHORT

ColNum = BYTE

TableNum = BYTE

Status = BYTE

ColName = B_VARCHAR

ColProperty = ColNum

 TableNum

 Status

 [ColName]

The ColInfo element is repeated for each column in the result set.

 Token Stream Definition

COLINFO = TokenType

 Length

 1*CpLProperty

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

http://go.microsoft.com/fwlink/?LinkId=140931

51 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Paramet er Description

TokenType COLINFO_TOKEN

Length The actual data length, in bytes, of the ColProperty stream. The length does not include the

token type and the length field.

ColNum The column number in the result set.

TableNum The number of the base table that the column was derived from. The value is 0 if the value

of Status is EXPRESSION.

Status 0x4: EXPRESSION (the column was the result of an expression).

0x8: KEY (the column is part of a key for the associated table).

0x10: HIDDEN (the column was not requested, but was added because it was part of a key

for the associated table).

0x20: DIFFERENT_NAME (the column name is different from the requested column name if

there is a column alias).

ColName The base column name. This occurs only if DIFFERENT_NAME is set in Status.

2.2.7.5 COLFMT

 Token Stream Name

COLFMT

 Token Stream Function

Describes the data type and length of the column data for ROWs that follow in the data stream.

 Token Stream Comments

Á The token value is 0xA1.

Á This token is used to tell the client the data type and length of the column data. It describes the

format of the data found in a ROW data stream.

Á All COLFMT data streams are grouped together.

 Token Stream - Specific Rules

TokenType = BYTE

UserType = USHORT

fNullable = BIT

fCaseSen = BIT

usUpdateable = 2BIT ; 0 = ReadOnly

 ; 1 = Read/Write

 ; 2 = Unused

fIdentity = BIT

usReservedODBC = 2BIT

Flags = fNullable

 fCaseSen

 usUpdateable

 fIdentity

 FRESERVEDBIT

52 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 usReservedODBC

 8FRESERVEDBIT

TableName = US_VARCHAR

ColFmtData = UserType

 Flags

 TYPE_INFO

 [TableName]

The TableName element is specified only if text or image columns are included in the result set.

 Token Stream Definition

COLFMT = TokenType

 Length

 1*ColFmtData

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType COLFMT_TOKEN

Length The number of bytes in the token stream, excluding the TokenType and Length fields.

UserType The user type ID of the columnôs data type.

Flags Bit flags in least significant bit order:

Á fCaseSen is a bit flag. Set to 1 if the column is case sensitive for searches

Á fNullable is a bit flag. Its value is 1 if the column is nullable.

Á usUpdateable is a 2 -bit field. Its value is 0 if column is read -only, 1 if column is

read/write, and 2 if updat eability is unknown. <4>

Á fIdentity is a bit flag. Its value is 1 if the column is an identity column.

Á usReservedODBC is a 2 -bit field that is used by ODS gateways supporting the ODBC ODS

gateway driver.

TableName The fully qualified base table name for this column. Contains the table name length and

table name. This exists only for text and image columns.

2.2.7.6 COLNAME

 Token Stream Name

COLNAME

 Token Stream Function

Describes the column names of the returning rows.

53 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 Token Stream Comments

Á The token value is 0xA0.

Á This token is used to tell the client how many columns of data are being returned to the client. It

also indicates the column names for each column of data.

Á All COLNAME data streams are grouped together.

 Token Stream - Specific Rules

TokenType = BYTE

Length = USHORT

ColNameData = B_VARCHAR

 Token Stream Definition

COLNAME = TokenType

 Length

 1*ColNameData

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType COLNAME_TOKEN

Length The number of bytes in the token stream, excluding the TokenType and Length fields.

ColNameData The column name for each column.

2.2.7.7 DONE

 Token Stream Name

DONE

 Token Stream Function

Indicates the completion status of a SQL statement.

 Token Stream Comments

Á The token value is 0xFD.

Á This token is used to indicate the completion of a SQL statement. Because multiple SQL

statements may be sent to the server in a single SQL batch, multiple DONE tokens may be
generated. In this case, all but the final DONE token will have a Status value wi th the
DONE_MORE bit set (details follow).

Á A DONE token is returned for each SQL statement in the SQL batch, except for variable

declarations.

54 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Á For execution of SQL statements within stored procedures, DONEPROC and DONEINPROC tokens

are used in place of DON E tokens.

 Token Stream - Specific Rules

TokenType = BYTE

Status = USHORT

CurCmd = USHORT

DoneRowCount = LONG

 Token Stream Definition

DONE = TokenType

 Status

 CurCmd

 DoneRowCount

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType DONE_TOKEN

Status The Status field MUST be a bitwise ñORò of the following:

Á 0x00: DONE_FINAL (this DONE is the final DONE in the request).

Á 0x1: DONE_MORE (this DONE message is not the final DONE message in the

response; subsequent data streams to follow).

Á 0x2: DONE_ERROR (an error occurred on the current SQL statement).

Á 0x4: DONE_ INXACT (a transaction is in progress). <5>

Á 0x10: DONE_COUNT (the DoneRowCount value is valid; this is used to distinguish

between a valid value of 0 for DoneRowCount or just an initialized variable).

Á 0x20: DONE_ATTN (the DONE message is a server acknowledgement of a client

ATTENTION message.)

Á 0x100: DONE_SRVERROR (used in place of DONE_ERROR when an error occurred on

the current SQL statement that is severe enough to require the result set, if any, to
be discarded).

CurCmd The token of the current SQL statement.

DoneRowCount The count of rows that were affected by the SQL statement. The value of DoneRowCount

is valid only if the value of Status includes DONE_COUNT.

2.2.7.8 DONEINPROC

 Token Stream Name

55 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

DONEINPROC

 Token Stream Function

Indicates the completion status of a SQL statement within a stored procedure.

 Token Stream Comments

Á The token value is 0xFF.

Á A DONEINPROC token is sent for each executed SQL statement within a stored procedure.

Á A DONEINPROC token MUST be followed by another DONEPROC token or a DONEINPROC token.

 Token Stream - Specific Rules

TokenType = BYTE

Status = USHORT

CurCmd = USHORT

DoneRowCount = LONG

 Token Stream Definition

DONEINPROC = TokenType

 Status

 CurCmd

 DoneRowCount

 Token Stream Parameter Details

Token stream parameter det ails are described in the following table.

Parameter Description

TokenType DONEINPROC_TOKEN

Status The Status field MUST be a bitwise 'OR' of the following:

Á 0x1: DONE_MORE (this DONEINPROC message is not the final

DONE/DONEPROC/DONEINPROC message in the response; more data streams are to
follow).

Á 0x2: DONE_ERROR (an error occurred on the current SQL statement, or execution of

a stored procedure was interrupted .).

Á 0x4: DONE_INXACT (a transaction is in progress). <6>

Á 0x10: DONE_COUNT (the DoneRowCount value is valid; this is used to distinguish

between a valid value of 0 for DoneRowCount or just an initialized variable).

Á 0x100: DONE_SRVERROR (used in place of DONE_ERROR when an error occurred on

the current SQL statement that is severe enough to require the result, if any, to be
discarded).

CurCmd The token of the current SQL statement.

56 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Parameter Description

DoneRowCount The count of rows that were affected by t he SQL statement. The value of DoneRowCount

is valid if the value of Status includes DONE_COUNT.

2.2.7.9 DONEPROC

 Token Stream Name

DONEPROC

 Token Stream Function

Indicates the completion status of a stored procedure. This is also generated for stored procedures
executed through SQL statements.

 Token Stream Comments

Á The token value is 0xFE.

Á A DONEPROC token is sent when all the SQL statements within a stored procedure have been

executed.

Á A DONEPROC token may be followed by another DONEPROC token or a DONEINPROC only if the

DONE_MORE bit is set in the Status value.

Á There is a separate DONEPROC token sent for each stored procedure that is called.

 Token Stream - Specific Rules

TokenType = BYTE

Status = USHORT

CurCmd = USHORT

DoneRowCount = LONG

 Token Stream Definition

DONEPROC = TokenType

 Status

 CurCmd

 DoneRowCount

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType DONEPROC_TOKEN

Status The Status field MUST be a bitwise 'OR' of the following:

Á 0x00: DONE_FINAL (this DONEPROC is the final DONEPROC in the request).

57 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Parameter Description

Á 0x1: DONE_MORE (this DONEPROC message is not the final DONEPROC message in

the response; more data streams are to follow).

Á 0x2: DONE_ERROR (an error occurred on the current stored procedure).

Á 0x4: DONE_INXACT (a transaction is in progress). <7>

Á 0x10: DONE_COUNT (the DoneRowCount value is valid; this is used to distinguish

between a valid value of 0 for DoneRo wCount or just an initialized variable).

Á 0x80: DONE_RPCINBATCH (this DONEPROC message is associated with an RPC

within a set of batched RPCs; this flag is not set on the last RPC in the RPC batch).

Á 0x100: DONE_SRVERROR (used in place of DONE_ERROR when an error occurred on

the current stored procedure that is severe enough to require the result set, if any,
to be discarded).

CurCmd The token of the SQL statement for executing stored procedures.

DoneRowCount The count of rows that were affected by the command. The value of DoneRowCount is

valid if the value of Status includes DONE_COUNT.

2.2.7.10 ENVCHANGE

 Token Stream Name

ENVCHANGE

 Token Stream Function

A notification of an environment change (such as database and language).

 Token Stream Comments

Á The token value is 0xE3.

Á Includes old and new environment values.

 Token Stream - Specific Rules

TokenType = BYTE

Length = USHORT

Type = BYTE

NewValue = B_VARBYTE

OldValue = B_VARBYTE

EnvValueData = Type

 NewValue

 OldValue

 Token Stream Definition

ENVCHANGE = TokenType

 Length

58 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 EnvValueData

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType ENVCHANGE_TOKEN

Length The total length of the ENVCHANGE data stream (EnvValueData).

Type The type of environment change:

1: Database

2: Language

3: Character set

4: Packet size

Type Old value New value

1: Database OLDVALUE = B_VARBYTE NEWVALUE = B_VARBYTE

2: Language OLDVALUE = B_VARBYTE NEWVALUE = B_VARBYTE

3: Character set OLDVALUE = B_VARBYTE NEWVALUE = B_VARBYTE

4: Packet size OLDVALUE = B_VARBYTE NEWVALUE = B_VARBYTE

Note

For types 1, 2, and 3, the payload is an MBCS string; the LENGTH always reflects the number of
bytes.

2.2.7.11 ERROR

 Token Stream Name

ERROR

 Token Stream Function

Used to send an error message to the client.

 Token Stream Comments

Á The token value is 0xAA.

 Token Stream - Specific Rules

TokenType = BYTE

Length = USHORT

Number = LONG

59 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

State = BYTE

Class = BYTE

MsgText = US_VARCHAR

ServerName = B_VARCHAR

ProcName = B_VARCHAR

LineNumber = USHORT

 Token Stream Definition

ERROR = TokenType

 Length

 Number

 State

 Class

 MsgText

 ServerName

 ProcName

 LineNumber

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType ERROR_TOKEN

Length The total length of the ERROR data stream, in bytes.

Number The error number. <8>

State The error state, used as a modifier to the error number.

Class The class (severity) of the error. A class of less than 10 indicates an informational

message.

MsgText The message text length and message text using US_VARCHAR format.

ServerName The server name length and server name using B_VARCHAR format.

ProcName The stored procedure name length and the stored procedure name using B_VARCHAR

format.

LineNumber The line number in the SQL batch or stored procedure that caused the error. Line numbers

begin at 1; therefore, if the line number is not applicable to the message, the value of

LineNumber will be 0.

Class

level Description

0-9 Informational messages that return status information or report errors that are not severe. <9>

10 Informational messages that return status information or report errors that are not severe. <10>

60 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Class

level Description

11 -16 Errors that can be corrected by the user.

11 The given object or entity does not exist.

12 A special severity for SQL s tatements that do not use locking because of special options. In some

cases, read operations performed by these SQL statements could result in inconsistent data,

because locks do not guarantee consistency.

13 Transaction -deadlock errors.

14 Security -rela ted errors, such as permission denied.

15 Syntax errors in the SQL statement.

16 General errors that can be corrected by the user.

17 -19 Software errors that cannot be corrected by the user. These errors require system administrator

action.

17 The SQL statement caused the database server to run out of resources (such as memory, locks,

or disk space for the database) or to exceed some limit set by the system administrator.

18 There is a problem in the database engine software, but the SQL statem ent completes execution,

and the connection to the instance of the database engine is maintained. System administrator

action is required.

19 A nonconfigurable database engine limit has been exceeded, and the current SQL batch has

been terminated. Error m essages with a severity level of 19 or higher stop the execution of the

current SQL batch. Severity level 19 errors are rare and must be corrected by the system

administrator. Error messages with a severity level from 19 through 25 are written to the error

log.

20 -25 System problems have occurred. These are fatal errors, which means that the database engine

task that was executing a SQL batch is no longer running. The task records information about

what occurred and then terminates. In most cases, the appl ication connection to the instance of

the database engine will also terminate. If this happens, depending on the problem, the

application might not be able to reconnect.

Error messages in this range can affect all of the processes accessing data in the sam e database

and may indicate that a database or object is damaged. Error messages with a severity level

from 19 through 25 are written to the error log.

20 An SQL statement has encountered a problem. Because the problem has affected only the

current task, it is unlikely that the database itself has been damaged.

21 A problem has been encountered that affects all tasks in the current database, but it is unlikely

that the database itself has been damaged.

22 The table or index specified in the message has been damaged by a software or hardware

problem.

Severity level 22 errors occur rarely. If one occurs, run DBCC CHECKDB to determine whether

other objects in the database are also damaged. The problem might be in the buffer cache only

and not on the disk itself. If so, restarting the instance of the database engine corrects the

problem. To continue working, reconnect to the instance of the database engine; otherwise, use

DBCC to repair the problem. In some case s, restoration of the database might be required.

If restarting the instance of the database engine does not correct the problem, the problem is on

the disk. Sometimes destroying the object specified in the error message can solve the problem.

61 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Class

level Description

For example, if the message reports that the instance of the database engine has found a row

with a length of 0 in a non -clustered index, delete the index and rebuild it.

23 The integrity of the entire database is in question because of a hardware or software proble m.

Severity level 23 errors occur rarely. If one occurs, run DBCC CHECKDB to determine the extent

of the damage. The problem might be in the cache only and not on the disk itself. If so,

restarting the instance of the database engine corrects the problem. To continue working,

reconnect to the instance of the database engine; otherwise, use DBCC to repair the problem. In

some cases, restoration of the database might be required.

24 A media failure occurred. The system administrator may have to restore the d atabase or resolve

a hardware issue.

If an error is produced within a result set, the ERROR token is sent before the DONE token for the

SQL statement, and the DONE token is sent with the error bit set.

2.2.7.12 INFO

 Token Stream Name

INFO

 Token Stream Function

Used to send an information message to the client.

 Token Stream Comments

Á The token value is 0xAB.

 Token Stream - Specific Rules

TokenType = BYTE

Length = USHORT

Number = LONG

State = BYTE

Class = BYTE

MsgText = US_VARCHAR

ServerName = B_VARCHAR

ProcName = B_VARCHAR

LineNumber = USHORT

 Token Stream Definition

INFO = TokenType

 Length

 Number

 State

 Class

 MsgText

 ServerName

 ProcName

62 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 LineNumber

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType INFO_TOKEN

Length The total length of the INFO data stream, in bytes.

Number The info number. <11>

State The error state, used as a modifier to the info Number.

Class The class (severity) of the error. A class of less than 10 indicates an informational

message.

MsgText The message text length and message text using US_VARCHAR format.

ServerName The server name length and server name using B_VARCHAR format.

ProcName The stored procedure name length and the stored procedure name using B_VARCHAR

format.

LineNumber The line number in the SQL batch or stored procedure that caused the error. Line numbers

begin at 1; therefore, if the line number is not applicable to the message as determined by

the upper layer, the value of LineNumber is 0.

2.2.7.13 LOGINACK

 Token Stream Name

LOGINACK

 Token Stream Function

Used to send a response to a login request to the client.

 Token Stream Comments

Á The token value is 0xAD.

Á If a LOGINACK is not received by the client as part of the login procedure, the logon to the server

is unsuccessful.

 Token Stream - Specific Rules

TokenType = BYTE

Length = USHORT

Interface = BYTE

TDSVersion = DWORD

Pro gName = B_VARCHAR

VersionMark = BYTE

MajorVer = BYTE

63 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

MinorVer = BYTE

BuildNum = BYTE

ProgVersion = VersionMark

 MajorVer

 MinorVer

 BuildNum

 To ken Stream Definition

LOGINACK = TokenType

 Length

 Interface

 TDSVersion

 ProgName

 ProgVersion

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType LOGINACK_TOKEN

Length The total length, in bytes, of the following fields: Interface, TDSVersion, ProgName, and

ProgVersion.

Interface The type of inte rface with which the server will accept client requests:

0: LDEFSQL (The server confirms that whatever is sent by the client is acceptable).

1: LXSQL (T -SQL is accepted).

TDSVersion The TDS 4.2 version being used by the server. This value is sent as big -endian and MUST

be 0x04020000.

ProgName The name of the server software (for example, "SQL Server").

VersionMark Always set to 95.

MajorVer The major version number (0 -255).

MinorVer The minor version number (0 -255).

BuildNum The build number (0 -255). If the build number is greater than 255, the server SHOULD

send 255.

2.2.7.14 OFFSET

 Token Stream Name

OFFSET

 Token Stream Function

Used to inform the client where in the client's SQL text buffer a particular keyword occurs.

64 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 Token Stream Comments

Á The token value is 0x78.

 Token Stream - Specific Rules:

TokenType = BYTE

Identifier = USHORT

OffSetLen = USHORT

 Token Stream Definition

OFFSET = TokenType

 Identifier

 OffSetLen

 Token Stream Parameter Details

Token stream paramete r details are described in the following table.

Parameter Description

TokenType OFFSET_TOKEN

Identifier The keyword to which OffSetLen refers.

OffSetLen The offset in the SQL text buffer received by the server of the identifier. The SQL text buffer

begins with an OffSetLen value of 0 (MOD 64 kilobytes if the value of OffSet is greater than

64 kilobytes).

2.2.7.15 ORDER

 Token Stream Name

ORDER

 Token Stream Function

Used to inform the client by which columns the data is ordered.

 Token Stream Comments

Á The token value is 0xA9.

Á This token is sent only in the event that an ORDER BY clause is executed.

 Token Stream - Specific Rules

TokenType = BYTE

Length = USHORT

ColNum = *BYTE

The ColNum element is repeated once for each column within the ORDER BY clause.

65 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 Token Stream Definition

ORDER = TokenType

 Length

 ColNum

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType ORDER_TOKEN

Length The total length of the ORDER data stream.

ColNum The column number in the result set.

2.2.7.16 RETURNSTATUS

 Token Stream Name

RETURNSTATUS

 Token Stream Function

Used to send the status value of an RPC to the client. The server also uses this token to send the
result status value of a stored procedure executed through SQL Batch.

 Token Stream Comments

Á The token value is 0x79.

Á This token MUST be returned to the client when an RPC is executed by the server.

 Token Stream - Specific Rules

TokenType = BYTE

Value = LONG

 Token Stream Definition

RETURNSTATUS = T okenType

 Value

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType RETURNSTATUS_TOKEN

66 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Parameter Description

Value The return status value determined by the remote procedure. The return status MUST NOT

be NULL.

2.2.7.17 RETURNVALUE

 Token Stream Name

RETURNVALUE

 Token Stream Function

Used to send the return value of an RPC to the client . When an RPC is executed, the associated
parameters may be defined as input or output (or "return") parameters. This token is used to send a
description of the return parameter to the client. This token is also used to describe the value

returned by a use r-defined function (UDF) when executed as an RPC.

 Token Stream Comments

Á The token value is 0xAC.

Á Multiple return values may exist according to the RPC. There is a separate RETURNVALUE token

sent for each parameter returned.

Á Return parameters are sent in t he order in which they are defined in the procedure.

Á A UDF cannot have return parameters. As such, if a UDF is executed as an RPC, there is exactly

one RETURNVALUE token sent to the client.

 Token Stream - Specific Rules

TokenType = BYTE

ParamName = B_VARCHAR

Length = USHORT

Status = BYTE

UserType = USHORT

fNullable = BIT

fCaseSen = BIT

usUpdateable = 2BIT ; 0 = ReadOnly

 ; 1 = Read/Write

 ; 2 = Unused

fIdentity = BIT

usReservedODBC = 2BIT

Flags = fNullable

 fCaseSen

 usUpdateable

 fIdentity

 FRESERVEDBIT

 usReservedODBC

 8FRESERVEDBIT

TypeInfo = TYPE_INFO

Value = TYPE_VARBYTE

 Token Stream Definition

67 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

RETURNVALUE = TokenType

 Length

 ParamName

 Status

 UserType

 Flags

 TypeInfo

 Value

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType RETURNVALUE_TOKEN

Length The number of bytes in the token stream, excluding the TokenType and Length fields.

ParamName The parameter name length and parameter name (within B_VARCHAR).

Status 0x01: If ReturnValue corresponds to the OUTPUT parameter of a stored procedure

invocation.

0x02: If ReturnValue corresponds to the return value of the UDF.

UserType The user type ID of the columnôs data type.

Flags These bit flags are described in least significant bit order. All of these bit flags SHOULD be

set to zero. For a description of each bit flag, see section 2.2.7.5 .

Á fCaseSen

Á fNullable

Á usUpdateable <12>

Á fIdentity

Á usReserv edODBC

TypeInfo The TYPE_INFO for the message.

Value The type -dependent data for the parameter (within TYPE_VARBYTE).

2.2.7.18 ROW

 Token Stream Name

ROW

 Token Stream Function

Used to send a complete row, as defined by the COLNAME and COLFMT tokens, to the client.

 Token Stream Comments

68 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Á The token value is 0xD1.

 Token Stream - Specific Rules

TokenType = BYTE

TextPointer = B_VARBYTE

Timestamp = 8BYTE

Data = TYPE_VARBYTE

ColumnData = [TextPointer Timestamp]

 Data

AllColumnData = 1*ColumnData

The ColumnData element is repeated once for each column of data.

TextPointer and Timestamp MUST NOT be specified if the instance of type text/image is a NULL
instance (GEN_NULL).

 Token Stream Definition

ROW = TokenType

 AllColumnData

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType ROW_TOKEN

TextPointer The length of the text pointer and the text pointer for data.

Timestamp The timestamp of a text/image column. This is not present if the value of Data is

GEN_NULL.

Data The actual data for the column. The TYPE_INFO information describing the data type of this

data is given in the preceding COLFMT_TOKEN, ALTFMT_TOKEN, or OFFSE T_TOKEN.

2.2.7.19 SSPI

 Token Stream Name

SSPI

 Token Stream Function

The SSPI token returned during the login process.

 Token Stream Comments

Á The token value is 0xED.

 Token Stream - Specific Rules

69 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

TokenType = BYTE

SSPIBuffer = US_VARBYTE

 Token Stream Definition

SSPI = TokenType

 SSPIBuffer

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

Parameter Description

TokenType SSPI_TOKEN

SSPIBuffer The length of the SSPIBuffer and the SSPI buffer using US_VARBYTE format.

2.2.7.20 TABNAME

 Token Stream Name

TABNAME

 Token Stream Function

Used to send the table name to the client only when in browser mode or from sp_cursoropen.

 Token Stream Comments

Á The token value is 0xA4.

 Token Stream - Specific Rules

TokenType = BYTE

Length = USHORT

TableName = B_VARCHAR

AllTableNames = 1*TableName

The TableName element is repeated once for each table name in the SQL statement.

 Token Stream Definition

TABNAME = TokenType

 Length

 AllTableNames

 Token Stream Parameter Details

Token stream parameter details are described in the following table.

70 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Parameter Description

TokenType TABNAME_TOKEN

Length The actual data length, in bytes, of the TABNAME token stream. The length does not include

the TokenType and Length fields.

TableName The name of the base table referenced in the SQL statement.

2.3 Directory Service Schema Elements

None.

71 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

3 Protocol Details

This section describes the important elements of the client software and the server software
necessary to support the TDS 4.2 protocol.

3.1 Common Details

As described in section 1.3 , TDS 4.2 is an application - level protocol that is used for the transfer of
requests and responses between clients and database server systems. Messages sent by clients or
servers must be limited to the set of messages defined in this protocol.

The TDS 4.2 server is message -oriented. After a connection has been established between the client
and server, a complete message is sent from t he client to the server. Following this, a complete
response is sent from the server to the client (with the possible exception of when the client aborts
the request), and then the server waits for the next request.

Other than this Post -Login state, the s tates defined by the TDS 4.2 protocol are as follows: (1) pre -
authentication (Pre -Login), (2) authentication (Login), and (3) when the client sends an attention

message (Attention). These are described in subsequent sections.

3.1.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does n ot mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this
document.

For information about the abstract data model for the client, see section 3.2.1 . For information
about the abstract data model for the server, see section 3.3.1 .

3.1.2 Timers

For a description of the client timer used, see section 3.2.2 . For a description of the server timer
used, see section 3.3.2 .

3.1.3 Initialization

None.

3.1.4 Higher - Layer Triggered Events

For information about higher - layer triggered events for the client, see section 3.2.4 . For information
about higher - layer triggered events for the server , see section 3.3.4 .

3.1.5 Message Processing Events and Sequencing Rules

The following sequence diagrams illustrate the possible message exchange sequences between

client and server . For details about message processing events and sequencing rules for the client,
see section 3.2.5 . For details about message processing events and sequencing rules for the server,
see section 3.3.5 .

72 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Figure 3: Pre - Login to Post - Login sequence

73 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Figure 4: SQL batch and RPC sequence

74 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Figure 5: Tra nsaction manager request sequence

75 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Figure 6: Bulk insert sequence

3.1.6 Timer Events

For the timer events of the client, see section 3.2.6 . For the timer events of the server, see section
3.3.6 .

3.1.7 Other Local Events

A TDS 4.2 session is tied to the underlying established network protocol session. As such, loss or

termination of a network connection is equivalent to immediate termination of a TDS 4.2 session.

For the other local events of the client, see section 3.2.7 . For other local events of the server, see
section 3.3.7 .

76 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

3.2 Client Details

The following state machine diagram describes TDS 4.2 on the client side.

Figure 7: TDS 4.2 client state machine

3.2.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The described organization is provided to facilitate the
explanation of how the protocol behaves. This document does n ot mandate that implementations
adhere to this model as long as their external behavior is consistent with what is described in this

document.

77 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

A TDS 4.2 client SHOULD maintain the following data:

Á Encryption option . Possible values are no encryption, login -only encryption, and full encryption.

For more details, see the "Encryption" section of PRELOGIN.

Á Authentication scheme . Possible values are standard authentication and SSPI authentication.

For more det ails, see the "Security and Authentication Methods" section of section 1.7 .

Á Connection time - out value . For more details, see Timers .

Á Client request time - out value . For more details, see Timers .

Á Cancel time - out value . For more details, see Timers .

Á Transaction descriptor value . For more details, see section 2.2.6.8

3.2.2 Timers

A TDS 4.2 client SHOULD implement the following timers:

Á Connection Timer. Controls the maximum time spent during the establishment of a TDS 4.2

connection. The default Connection time -out value SHOULD be 15 seconds. The implementation

SHOULD allow the upper layer to specify a nondefault value, including an infi nite value (for
example no time -out).

Á Client Request Timer. Controls the maximum time spent waiting for a message response from

the server for a client request sent after the connection has been established. The TDS 4.2
protocol does not impose any restri ction on the Client request time -out value. The
implementation SHOULD allow the upper layer to specify a nondefault value, including an infinite

value (for example, no time -out).

Á Cancel Timer. Controls the maximum time spent waiting for a message cancellat ion

acknowledgement after an Attention request is sent to the server. The TDS 4.2 protocol does not
impose any restriction on the Cancel time -out value. The implementation SHOULD allow the
upper layer to specify a nondefault value, including an infinite va lue (for example, no time -out).

If a TDS 4.2 client implementation implements any of the timers, it MUST implement their behavior

according to this specification.

A TDS 4.2 client SHOULD request the transport to detect and indicate a broken connection if t he
transport provides this mechanism. If the transport used is TCP, it SHOULD use the TCP keep -alives
(for more details, see [RFC1122]) in order to detect a nonresponding server if infinite conn ection
time -out or infinite client request time -out is used. The default values of the TCP keep -alive values
set by a TDS 4.2 client are 30 seconds of no activity until the first keep -alive packet is sent and 1
second between when successive keep -alive pac kets are sent if no acknowledgement is received.

The implementation SHOULD allow the upper layer to specify other TCP keep -alive values.

3.2.3 Initialization

None.

3.2.4 Higher - Layer Triggered Events

A TDS 4.2 client MUST support the following events from the upper layer:

Á Connection Open Request to establish a new TDS 4.2 connection to a TDS 4.2 server.

http://go.microsoft.com/fwlink/?LinkId=112180

78 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Á Client Request to send a request to a TDS 4.2 server on an already established TDS 4.2

connection. The Client Request is a message of one of the following four types: SQL Batch, Bulk

Load, transaction manager request, or an RPC.

In addition, it SHOULD support the following event from th e upper layer:

Á Cancel Request to cancel a client request while waiting for a server response. For example, this

enables the upper layer to cancel a long - running client request if the user/upper layer is no
longer seeking the result, thus freeing up client and server resources. If a client implementation
of the TDS 4.2 protocol supports the Cancel Request event, it MUST handle it as described in this
specification.

The processing and actions triggered by these events are described in the remaining parts of this

section.

When a TDS 4.2 client receives a Connection Open Request from the upper layer in the initial state
of a TDS 4.2 connection, it MUST perform the following actions:

Á If the TDS 4.2 client implements the Connection Timer, it MUST start the Connection Timer if the

connection time -out value is not infinite.

Á Send a Pre -Login message to the server, by using the underlying transport protocol.

Á If the transport does not report an error, then enter the Sent Initial Pre -Login Message state.

When a TDS 4.2 client receives a Connection Open Request from the upper layer in any state other
than the initial state of a TDS 4.2 connection, it MUST indicate an error to the upper layer.

When a TDS 4.2 client receives a Client Request from the upper layer in the Logged In state it MUST
perform the following actions:

Á If the TDS 4.2 client implements the Client Request Timer, it MUST start the Client Request Timer

if the client request time -out value is not infinite.

Á Send either the SQL Batch, Bul k Load, transaction manager request, or RPC message to the

server. The message and its content MUST match the requested message from the Client
Request.

Á If the transport does not report an error, then enter the Sent Client Request state.

When a TDS 4.2 cl ient supporting the Cancel Request receives a Cancel Request from the upper
layer in the Sent Client Request state, it MUST perform the following actions:

Á If the TDS 4.2 client implements the Cancel Timer, it MUST start the Cancel Timer if the Attention

request time -out value is not infinite.

Á Send an Attention message to the server. This indicates to the server that the currently

executing request SHOULD be aborted.

Á Enter the Sent Attention state.

3.2.5 Message Processing Events and Sequencing Rules

The processing of messages received from a TDS 4.2 server depends on the message type and the
state the TDS 4.2 client is in. The message type is determined from the TDS 4.2 packet type and
the token stream inside the TDS 4.2 packet payload, as described in section 2.2.3 . The rest of this

section describes message proce ssing and actions that can be taken on messages.

79 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

When the TDS 4.2 client enters either the Logged In state or the final state , it MUST stop the
Connection Timer (if implemented and running), the Client Request Timer (if implemented an d

running), and the Cancel Timer (if implemented and running).

When a TDS 4.2 client receives a structurally invalid TDS 4.2 message, it MUST close the underlying

transport connection, indicate an error to the upper layer, and enter the final state.

When a TDS 4.2 client receives a table response (TDS 4.2 packet type %x04) from the server, it
MUST behave as follows, according to the state of the TDS 4.2 client.

3.2.5.1 Sent Initial PRELOGIN Packet State

If the response contains a structurally valid PRELOGIN response indicating a success, the TDS 4.2
client MUST take action according to the Encryption option and Authentication scheme:

Á The Encryption option MUST be handled as described in section 2.2.6.4 in the PRELOGIN

message description.

Á If encryption was negotiated, the TDS 4.2 client MUST initiate a TLS/SSL handshake, send to the

server a TLS/SSL message obtained from the TLS/SSL layer encapsulated in TDS 4.2 packets of
type PRELOGIN (0x12), and enter the Sent TLS/SSL negotiation packet state.

Á If encryption was not negotiated and the upper layer did not request full encryption, the TDS 4.2

client MUST send to the server a LOGIN message that includes either standard login and
password or indicates that integrated authentication SHOULD be used, and enter the Sent LOGIN
record state. The TDS 4.2 specification does not prescribe the aut hentication protocol if SSPI
authentication is used. The current implementation supports NTLM (for more information, see
[NTLM]) and Kerberos (for more information, see [RFC4120]).

Á If encryption was not negotiated and the upper layer requested full encryption, then the TDS 4.2

client MUST close the underlying transport connection, indicate an error to the upper layer, and
enter the final state.

Á If the response received from the server does not contain a structurally valid PRELOGIN

response, or it contains a structurally valid PRELOGIN response indicating an error, the TDS 4.2
client MUST close the underlying transport connection, indicat e an error to the upper layer, and

enter the final state.

3.2.5.2 Sent TLS/SSL Negotiation Packet State

If the response contains a structurally valid TLS/SSL response message (TDS 4.2 packet Type
0x12), the TDS 4.2 client MUST pass the TLS/SSL message contained in it to the TLS/SSL layer and
MUST proceed as follows:

Á If the TLS/SSL layer indicates that further handshaking is needed, the TDS 4.2 client MUST send

to the server the TLS/SSL message obtained from the TLS/SSL lay er encapsulated in TDS 4.2
packets of Type PRELOGIN (0x12).

Á If the TLS/SSL layer indicates successful completion of the TLS/SSL handshake, the TDS 4.2

client MUST send a login message to the server and enter the Sent LOGIN record state.

Á If login -only encry ption was negotiated in the Pre -Login message description as described in

section 2.2 , the first, and only the first, TDS 4.2 packet of the login message MUST be encrypted
using TLS/SSL and encapsulated in a TLS/SSL message. All other TDS 4.2 packets sent or
received MUST be in plaintext.

http://go.microsoft.com/fwlink/?LinkId=90235
http://go.microsoft.com/fwlink/?LinkId=90458

80 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

Á If full encryption was negotiated as described in the Pre -Login message description in section

2.2.6.4 , all subsequ ent TDS 4.2 packets sent or received from this point on MUST be encrypted

using TLS/SSL and encapsulated in a TLS/SSL message.

Á If the TLS/SSL layer indicates an error, the TDS 4.2 client MUST close the underlying transport

connection, indicate an error to the upper layer, and enter the final state.

If the response received from the server does not contain a structurally valid TLS/SSL response or it
contains a structurally valid response indicating an error, the TDS 4.2 client MUST close the
underlying tran sport connection, indicate an error to the upper layer, and enter the final state.

3.2.5.3 Sent LOGIN Record State

If standard login is used and the response received from the server contains a structurally valid
login response indicating a successful login, the TDS 4.2 client MUST indicate successful login
completion to the upper layer and enter the Logged In state.

If SPNEGO authentication is used and the response received from the server contains a correct SSPI

token (that is, the SSPI signature in the token matches the local value of the client), the TDS 4.2
client MUST send an SSPI message (TDS 4.2 packet type %x11) containing the initial data obtained

from the applicable SSPI lay er and enter the Sent SSPI Record with SPNEGO Packet state. The TDS
4.2 specification does not prescribe the authentication protocol if SSPI authentication is used. The
current implementation supports NTLM (for more information, see [NTLM]) and Kerberos (for more
information, see [RFC4120]).

If the response received from the server does not contain a structurally valid login response, or it
contains a structurally valid login response indicating login failure, or the SSPI signature received
from server in the SSPI token does not match the TDS 4.2 client's local copy of the SSPI signature

when SPNEGO authentication is used, the TDS 4.2 cli ent MUST close the underlying transport
connection, indicate an error to the upper layer, and enter the final state.

3.2.5.4 Sent SSPI Record with SPNEGO Packet State

If the response received from the server contains a structurally valid login response indicating a

successful login, the TDS 4.2 client MUST indicate successful login completion to the upper layer and
enter the Logged In state.

If the response received from the server contains a structurally valid SSPI response message, the
TDS 4.2 client MUST send to the server an SSPI message (TDS 4.2 p acket type %x11) containing
the data obtained from the applicable SSPI layer.

If the response received from the server does not contain a structurally valid login response or SSPI
response, or if it contains a structurally valid login response indicating login failure, the TDS 4.2
client MUST close the underlying transport connection, indicate an error to the upper layer, and
enter the final state.

3.2.5.5 Logged In State

The TDS 4.2 client waits for notification from the upper layer. If the upper layer requests a message

to be sent to the server, the TDS 4.2 client MUST send the appropriate request to the server and
enter the Sent Client Request state. If the upper layer requests a termination of the connection, the
TDS 4.2 client MUST disconnect from the server and enter the final state. If the TDS 4.2 client

detects a connection error from the tra nsport layer, the TDS 4.2 client MUST disconnect from the
server and enter the final state.

http://go.microsoft.com/fwlink/?LinkId=90235
http://go.microsoft.com/fwlink/?LinkId=90458

81 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

3.2.5.6 Sent Client Request State

If the response received from the server contains a structurally valid response, the TDS 4.2 client
MUST indicate the result of the request to the upper layer and enter the Logged In state.

The client has the ability to return data/control to the upper layers while remaining in the Sent
Client Request state while the complete response has not been received or processed.

If the TDS 4.2 client supports Cancel Request, and the upper layer reques ts a Cancel Request to be
sent to the server, the TDS 4.2 client will send an Attention message to the server, start the Cancel
Timer, and enter the Sent Attention state.

If the response received from the server does not contain a structurally valid respon se, the TDS 4.2
client MUST close the underlying transport connection, indicate an error to the upper layer, and

enter the final state.

3.2.5.7 Sent Attention State

If the response is structurally valid, and it does not acknowledge the Attention as described in
section 2.2.1.6 , the TDS 4.2 client MUST discard any data contained in the response and remain in
the Sent Attention state.

If the response is structurally valid, and it acknowledges the Attention as described in section
2.2.1.6 , the TDS 4.2 client MUST discard any data contained in the response, indicate the
completion of the message to the upper layer together with the cause of the Attention (either an
upper - layer cancellation as described in section 3.2.4 or a message time -out as described in section
3.2.2), and enter the Logged In state.

If the response received from the server is not structurally valid, then the TDS 4.2 client MU ST close
the underlying transport connection, indicate an error to the upper layer, and enter the final state.

3.2.5.8 Final State

The connection is disconnected. All resources for this connection will be recycled by the TDS 4.2

server.

3.2.6 Timer Events

If a TDS 4.2 client implements the Connection Timer and the timer times out, the TDS 4.2 client

MUST close the underlying connection, indicate the error to the upper layer, and enter the final
state.

If a TDS 4.2 client implements the Client Request Timer and the timer times out, the TDS 4.2 client
MUST send an Attention message to the server and enter the Sent Attention state.

If a TDS 4.2 client implements the Cancel Timer and the timer times out, th e TDS 4.2 client MUST
close the underlying connection, indicate the error to the upper layer, and enter the final state.

3.2.7 Other Local Events

Whenever an indication of a connection error is received from the underlying transport, the TDS 4.2
client MUST close the transport connection, indicate an error to the upper layer, stop any timers if
they are running, and enter the final state. If TCP is used as the underlying transport, examples of
events that may trigger such action ðdepending on the actual TCP implementation ðmay be media
sense loss, a TCP connection going down in the middle of communication, or a TCP keep -alive
failure.

82 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

3.3 Server Details

The following state machine diagram describes TDS 4.2 on the server side.

Figure 8: TDS 4.2 server state machine

3.3.1 Abstract Data Model

This section describes a conceptual model of possible data organization that an implementation
maintains to participate in this protocol. The organization is provided to explain how the protocol
behaves. This document does not mandate that implementations adhere to this model as long as
their external behavior is consistent with what is described in this document.

83 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

3.3.2 Timers

The TDS 4.2 protocol does not regulate any timer on a data stream. The TDS 4.2 server may
implement a timer on any message.

3.3.3 Initialization

The server MUST establish a listening endpoint based on one of the transport protocols described in
section 2.1 . The server may establish additional listening endpoints.

When a client makes a connection request, the transport layer listening endpoint initializes all
resources required for this connection. The server is ready to receive a pre - login message.

3.3.4 Higher - Layer Triggered Events

A higher layer SHOULD terminate a TDS 4.2 connection when it needs to. When this happens, the
server MUST terminate the connection and recycle all resources for this connection. No response is
sent to the client.

3.3.5 Message Processing Events and Sequencing Rules

The processing of messages received from a TDS 4.2 client depends on the message type and the

state the TDS 4.2 server is in. The message type is determined from the TDS 4.2 packet type and
the token stream inside the TDS 4.2 packet payload, as described in section 2.2 . The rest of this
section describes message process ing and the possible actions that can be taken on messages.

The corresponding action will be taken when the server is in the following states.

3.3.5.1 Initial State

The TDS 4.2 server receives the first packet from the client. The packet SHOULD be a PRELOGIN

packet to set up context for login. A pre - login message is indicated by the PRELOGIN (0x12)
message type. The TDS 4.2 server SHOULD close the underlying transport connection, indicate an

error to the upper layer, and enter the final state if the first packet is not a structurally correct
PRELOGIN packet. For instance, the PRELOGIN packet will not contain the client version as the first
option token. Otherwise, the TDS 4.2 server MUST do one of the following:

Á Return to the client a PRELOGIN structure wrapped in a table response (0x04) packet with

Encryption and enter the TLS/SSL Negotiatio n state if encryption is negotiated.

Á Return to the client a PRELOGIN structure wrapped in a table response (0x04) packet without

Encryption and enter the unencrypted Login Ready state if encryption is not negotiated.

3.3.5.2 TLS/SSL Negotiation

If the next packet from the TDS 4.2 client is not a TLS/SSL negotiation packet or if the packet is not

structurally correct, the TDS 4.2 server MUST close the underlying transport connection, indicate an
error to the upper layer, and then enter the final state. A TLS/SSL negotiation packet is a PR ELOGIN
(0x12) packet header encapsulated with TLS/SSL payload. The TDS 4.2 server MUST exchange a

TLS/SSL negotiation packet with the client and reenter this state until the TLS/SSL negotiation is
successfully completed. Upon successful negotiation, the TD S 4.2 server enters the Login Ready
state.

84 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

3.3.5.3 Login Ready

Depending on the type of packet received, the server MUST take one of the following actions:

Á If a valid LOGIN packet with standard login is received, the TDS 4.2 server MUST respond to the

TDS 4.2 client with a LOGINACK (0xAD), indicating that the login succeeded. The TDS 4.2 server
MUST enter the Logged In state.

Á If a valid LOGIN packet is received and integrated authentication is required by the TDS 4.2

client, the TDS 4.2 server MUST respond with an SSPI message containing the SSPI signature of
the TDS 4.2 client and enter the SPNEGO Negotiation state.

Á If a LOGIN packet with a standard login packet is received, but the login is invalid, the TDS 4.2

server MUST send an ERROR packet to the client. The TDS 4.2 server MUST close the underlying
transport connection, indicate an error to the upper layer, and enter the final state.

Á If the packet received is not a str ucturally valid LOGIN packet, the TDS 4.2 server will not send

any response to the client. The TDS 4.2 server MUST close the underlying transport connection,

indicate an error to the upper layer, and enter the final state.

3.3.5.4 SPNEGO Negotiation

This state is used to negotiate the security scheme between the client and server. The TDS 4.2
server processes the packet received according to the following rules:

Á If the packet received is a structurally valid SPNEGO negotiation packet, the TDS 4.2 server

delegates processing of the security token embedded in the packet to the SPNEGO layer. (For
more information about SPNEGO, see [RFC4178] .) The SPNEGO layer responds with one of three

results, and the TDS 4.2 server continues processing according to the response as follows:

Á Complete : The TDS 4.2 server then sends the security token to the upper layer (typic ally a

database server) for authorization. If the upper layer approves the security token, the TDS 4.2
server sends a LOGINACK message to the client and immediately enters the Logged In state.
If the upper layer rejects the security token, then a Login fai led ERROR token is sent back to

the client, the TDS 4.2 server closes the connection, and the TDS 4.2 server enters the final

state.

Á Continue : The TDS 4.2 server sends a SPNEGO negotiation response to the client, embedding

the new security token returned b y SPNEGO as part of the Continue response. (For more
information about SPNEGO, see [RFC4178] .) The server then waits for a message from the
client and reenters the SPNEGO negotiation state when s uch a packet is received.

Á Error : The server then MUST close the underlying transport connection, indicate an error to the

upper layer, and enter the final state.

Á If the packet received is not a structurally valid SPNEGO negotiation packet, the TDS 4.2 serv er

will send no response to the client. The TDS 4.2 server MUST close the underlying transport
connection, indicate an error to the upper layer, and enter the final state. (For more information
about SPNEGO, see [RFC4178] .)

3.3.5.5 Logged In

If a TDS 4.2 message of type 1, 3, 7, or 14 (see section 2.2.3.1.1) arrives, the TDS 4.2 server
begins processing by raising an event to the upper layer containing the data of the client request
and by entering the Client Request Execution state. If any other TDS 4.2 types arrive, the server
MUST close the underlying transport connection and enter the final state.

http://go.microsoft.com/fwlink/?LinkId=90461
http://go.microsoft.com/fwlink/?LinkId=90461
http://go.microsoft.com/fwlink/?LinkId=90461

85 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

The server MUST also enter the final state if the client closes the underlying transport connection or
if the upper layer requests the TDS layer to close the connection. In this case, no response is sent to

the client.

3.3.5.6 Client Request Execution

The TDS 4.2 server MUST continue to listen for messages from the client while awaiting notification
of client request for completion from the upper layer. The TDS 4.2 server MUST also do one of the
following:

Á If the upper layer notifies the TDS 4.2 server that the client request has finished successfully, the

TDS 4.2 server MUST send the results to the TDS 4.2 client and enter the Logged In state.

Á If the upper layer notifies TDS 4.2 that an error has been enco untered during the client request,

the TDS 4.2 server MUST send an ERROR message to the TDS 4.2 client and enter the Logged In
state.

Á If an Attention packet is received during the execution of the current client request, it MUST

deliver a cancel indication to the upper layer. If an Attention packet is received after the
execution of the current client request, it MUST NOT deliver a cancel indication to the upper

layer, because there is no existing execution to cancel. Instead, the TDS 4.2 server MUST send
an attention acknowledgment to the TDS 4.2 client and enter the Logged In state.

Á If another client request packet is received during the execution of the current client request, the

TDS 4.2 server SHOULD queue the new client request, and continue processing the client request
already in progress according to the preceding rules. When this operation is complete, the TDS
4.2 server reenters the Client Re quest Execution state and processes the newly arrived message.

3.3.5.7 Final State

The connection is disconnected. All resources for this connection are recycled by the TDS 4.2 server.

3.3.6 Timer Events

None.

3.3.7 Other Local Events

When there is a failure in under - layers, the server SHOULD terminate the TDS 4.2 session without
sending any response to the client . An under - layer failure could be triggered by network failure. It
can also be triggered by the termination action from the client, which could be communicated to the
server stack by under - layers.

86 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

4 Protocol Examples

The following sections describe several operations as used in common scenarios to illustrate the
function of the TDS 4.2 protocol. For each example, the binary TDS 4.2 message is provided,
followed by the decomposition displayed in XML.

4.1 Pre - Login Request

The following is an example of the pre - login request that is sent from the client to the server.

12 01 00 34 00 00 01 00 00 00 15 00 06 01 00 1B

00 01 02 00 1C 00 0C 03 00 28 00 04 FF 08 00 01

55 00 00 00 4D 53 53 51 4C 53 65 72 76 65 72 00

80 19 00 00

<PacketHeader>

 <Type>

 <BYTE>12 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>34 </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </PacketHeader>

 <PacketData>

 <Prelogin>

 <TokenType>

 <BYTE>00 </BYTE>

 </TokenType>

 <TokenPosition>

 <USHORT>00 15</USHORT>

 </TokenPosition>

 <TokenLeng>

 <USHORT>00 06</USHORT>

 </TokenLeng>

 <TokenType>

 <BYTE>01 </BYTE>

 </TokenType>

 <TokenPosition>

 <USHORT>00 1B</USHORT>

 </TokenPosition>

 <TokenLeng>

 <USHORT>00 01</USHORT>

 </TokenLeng>

87 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 <TokenType>

 <BYTE>02 </BYTE>

 </TokenType>

 <TokenPosition>

 <USHORT>00 1C</USHORT>

 </TokenPosition>

 <TokenLeng>

 <USHORT>00 0C</USHORT>

 </TokenLeng>

 <TokenType>

 <BYTE>03 </BYTE>

 </TokenType>

 <TokenPosition>

 <USHORT>00 28</USHORT>

 </TokenPosition>

 <TokenLeng>

 <USHORT>00 04</USHORT>

 </TokenLeng>

 <TokenType>

 <BYTE>FF </BYTE>

 </TokenType>

 <PreloginData>

 <BYTES>08 00 01 55 00 00 00 4D 53 53 51 4C 53 65 72

76 65 72 00 80 19 00 00</BYTE>

 </PreloginData>

 </Prelogin>

 </PacketDat a>

4.2 Login Request

The following is an example of the login request that is sent from the client to the server in two
packets.

The following information is included in the first packet.

02 00 02 00 00 00 01 00 53 51 4C 50 4F 44 30 36

38 2D 30 35 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 0C 73 61 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 02 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 08 0 0 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 03 01 06 0A 09 01 01 00 00 00 00 00

00 00 00 00 4F 53 51 4C 2D 33 32 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 07 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

88 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 0 0 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 04 02 00 00 4D 53 44 42 4C 49 42 00 00 00

07 06 00 00 00 00 0D 11 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

The following in formation is included in the second packet.

02 01 00 47 00 00 01 00 00 00 00 00 00 00 00 01

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 35 31 32

00 00 00 03 00 00 0 0

 <PacketHeader>

 <Type>

 <BYTE>02 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>02 </BYTE>

 <BYTE>3F </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID >

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </PacketHeader>

 <PacketData>

 <Login>

 <HostName>

 <BYTES>53 51 4C 50 4F 44 30 36 38 2D 30 35 00 00

00 00 00 00 00 00 00 00 00 00 00 0 0 00 00 00 00 </BYTES>

 </HostName>

 <cbHostName>

 <BYTE>0C </BYTE>

 </cbHostName>

 <UserName>

 <BYTES>73 61 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 </BYTES>

 </UserN ame>

 <cbUserName>

 <BYTE>02 </BYTE>

89 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 </cbUserName>

 <Password>

 <BYTES>59 75 6B 6F 6E 39 30 30 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 </BYTES>

 </Password>

 <cbPassword>

 <BYTE>08 </BYTE>

 </cbPassword>

 <HostProc>

 <BYTES>00 00 00 00 00 00 00 00 </BYTES>

 </HostProc>

 <FRESERVEDBYTE>

 <BYTES>00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 </BYTES>

 </FRESERVEDBYTE>

 <AppType>

 <BYTES>00 00 00 00 00 00 </BYTES>

 </AppType>

 <cbHostProc>

 <BYTE>00 </BYTE>

 </cbHostProc>

 <lInt2>

 <BYTE>03 </BYTE>

 </lInt2>

 <lInt4>

 <BYTE>01 </BYTE>

 </lInt4>

 <lChar>

 <BYTE>06 </BYTE>

 </lChar>

 <lFloat>

 <BYTE>0A </BYTE>

 </lfloat>

 <FRESERVEDBYTE>

 <BYTE>09 </BYTE>

 </FRESERVEDBYTE>

 <lUseDb>

 <BYTE>01 </BYTE>

 </lUseDb>

 <lDumpLoad>

 <BYTE>01 </BYTE>

 </lDumpLoad>

 <lInterface>

 <BYTE>00 </BYTE>

 </lInterface>

 <lType>

 <BYTE>00 </BYTE>

 </lType>

 <FRESERVEDBYTE>

 <BYTES>00 00 00 00 00 00 </BYTES>

 </FRESERVEDBYTE>

 <lDBLIBFla gs>

 <BYTE>00 </BYTE>

 </lDBLIBFlags>

 <AppName>

 <BYTES>4F 53 51 4C 2D 33 32 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 </BYTES>

 </AppName>

 <cbAppName>

90 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 <BYTE>07 </BYTE>

 </c bAppName>

 <ServerName>

 <BYTES>00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 </BYTES>

 </ServerName>

 <cbServerName>

 <BYTE>00 </BYTE>

 </cbServerName>

 <RemotePassword>

 <BYTES>00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00

00

00

00

00

00

00

00

00

00

00

00 </BYTES>

 </RemotePassword>

 <cbRemotePassword>

 <BYTE>00 </BYTE>

 </cbRemotePassword>

 <TDSVersion>

 <BYTES>04 02 00 0 0 </BYTES>

 </TDSVersion>

 <ProgName>

 <BYTES>4D 53 44 42 4C 49 42 00 00 00 </BYTES>

 </ProgName>

 <cbProgName>

 <BYTE>07 </BYTE>

 </cbProgName>

 <ProgVersion>

 <BYTES>06 00 00 00 </BYTES>

 </ProgVersion>

 <FRESERVEDBYTE>

 <BYTE>00 </BYTE>

 </FRESERVEDBYTE>

 <lFloat4>

 <BYTE>0D </BYTE>

 </lFloat4>

 <lDate4>

 <BYTE>11 </BYTE>

 </lDate4>

 <Language>

 <BYTES>00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 </BYTES>

 <cbLanguage>

 <BYTE>00 </BYTE>

 </cbLanguage>

 </Language>

 <SetLang>

 <BYTE>01 </BYTE>

 </SetLang>

 <FRESERVEDBYTES>

91 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 <BYTES>00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

00

00 00 00 00 00 00 00 00 00 00 </BYTES>

 </FRESERVEDBYTES>

 <PacketSize>

 <BYTES>35 31 32 00 00 00 </BYTES>

 </PacketSize>

 <cbPacketSize>

 <BYTE>03 </BYTE>

 </cbPacketSize>

 <Padding>

 <BYTES>00 00 00 </BYTES>

 </Padding>

 </Login>

 </PacketData>

4.3 Login Response

The following is an example of the login response that is sent from the server to the client.

04 01 00 E8 00 34 01 00 E3 0F 00 01 06 6D 61 73

74 65 72 06 6D 61 73 74 65 72 AB 39 00 45 16 00

00 02 00 25 00 43 68 61 6E 67 65 64 20 64 61 74

61 62 61 73 65 20 63 6F 6E 74 65 78 74 20 74 6F

20 27 6D 61 73 74 65 72 27 2E 08 41 42 43 44 45

46 47 31 00 01 00 E3 0D 00 02 0A 75 73 5F 65 6E

67 6C 69 73 68 00 AB 3B 00 47 16 00 00 01 00 27

00 43 68 61 6E 6 7 65 64 20 6C 61 6E 67 75 61 67

65 20 73 65 74 74 69 6E 67 20 74 6F 20 75 73 5F

65 6E 67 6C 69 73 68 2E 08 41 42 43 44 45 46 47

31 00 01 00 E3 09 00 03 05 69 73 6F 5F 31 01 00

AD 20 00 01 04 02 00 00 16 4D 69 63 72 6F 73 6F

66 74 20 53 51 4C 20 53 65 72 76 65 72 00 00 5F

0A 00 FF E3 09 00 04 03 35 31 32 03 35 31 32 FD

 <PacketHeader >

 <Type>

 <BYTE>04 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>E8 </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

92 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 </PacketHeader >

 <PacketData>

 <TableResponse>

 <ENVCHANGE>

 <TokenType>

 <BYTE>E3 </BYTE>

 </TokenType>

 <Length>

 <USHORT>0F 00 </USHORT>

 </Length>

 <EnvChangeData>

 <BYTES>01 06 6D 61 73 74 65 72 06 6D 61 73 74

65 72 </BYTES>

 </EnvChangeData>

 </ENVCHANGE>

 <INFO>

 <TokenType>

 <BYTE>AB </BYTE>

 </TokenType>

 <Length>

 <USHORT>39 00 </USHORT>

 </Length>

 <Number>

 <LONG>45 16 00 00 </LONG>

 </Number>

 <State>

 <BYTE>02 </BYTE>

 </State>

 <Class>

 <BYTE>00 </BYTE>

 </Class>

 <MsgText>

 <US_VARCHAR>

 <USHORT>25 00 </USHORT>

 <BYTES ascii="Changed database context to

'master'.">43 68 61 6E 67 65 64 20 6 4 61 74 61 62 61 73

65 20 63 6F 6E 74 65 78 74 20 74 6F 20 27 6D 61 73 74 65

72 27 2E </BYTES>

 </US_VARCHAR>

 </MsgText>

 <ServerName>

 <B_VARCHAR>

 <BYTE>08 </BYTE>

 <BYTES ascii="ABCDEFG1">41 42 43 44 45 46

47 31 </BYTES>

 </B_VARCHAR>

 </ServerName>

 <ProcName>

 <B_VARCHAR>

 <BYTE>00 </BYTE>

 <BYTES ascii="">

 </BYTES>

 </B_VARCHAR>

 </ProcName>

 <LineNumber>

 <USHORT>01 00 </USHORT>

 </LineNumber>

 </INFO>

 <ENVCHANGE>

93 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 <TokenType>

 <BYTE>E3 </BYTE>

 </TokenType>

 <Length>

 <USHORT>0D 00 </USHORT>

 </Length>

 <EnvChangeData>

 <BYTES>02 0A 75 73 5F 65 6E 67 6C 69 73 68 00 </BYTES>

 </EnvChangeData>

 </ENVCHANGE>

 <INFO>

 <TokenType>

 <BYTE>AB </BYTE>

 </TokenType>

 <Length>

 <USHORT>3B 00 </USHORT>

 </Lengt h>

 <Number>

 <LONG>47 16 00 00 </LONG>

 </Number>

 <State>

 <BYTE>01 </BYTE>

 </State>

 <Class>

 <BYTE>00 </BYTE>

 </Class>

 <MsgText>

 <US_VARCHAR>

 <USHORT>27 00 </USHORT>

 <BYTES ascii="Changed language setting to

us_english.">43 68 61 6E 67 65 64 20 6C 61 6E 67 75 61

67 65 20 73 65 74 74 69 6E 67 20 74 6F 20 75 73 5F 65 6E

67 6C 69 73 68 2E </BYTES>

 </US_VARCHAR>

 </MsgText>

 <ServerName>

 <B_VARCHAR>

 <BYTE>08 </BYTE>

 <BYTES ascii="ABCDEFG1">41 42 43 44 45 46

47 31 </BYTES>

 </B_VARCHAR>

 </ServerName>

 <ProcName>

 <B_VARCHAR>

 <BYTE>00 </BYTE>

 <BYTES ascii="">

 </BYTES>

 </B_VARCHAR>

 </ProcName>

 <LineNumber>

 <USHORT>01 00 </USHORT>

 </LineNumber>

 </INFO>

 <ENVCHANGE>

 <TokenType>

 <BYTE>E3 </BYTE>

 </TokenType>

 <Length>

 <USHORT>09 00 </USHORT>

94 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 </Length>

 <EnvChangeData>

 <BYTES>03 05 69 73 6F 5F 31 01 00 </BYTES>

 </EnvChangeData>

 </ENVCHANGE>

 <LOGINACK>

 <TokenType>

 <BYTE>AD </BYTE>

 </TokenType>

 <Length>

 <USHORT>20 00 </USHORT>

 </Length>

 <Interface>

 <BYTE>01 </BYTE>

 </Interface>

 <TDSVersion>

 <DWORD>04 02 00 00 </DWORD>

 </TDSVersion >

 <ProgName>

 <B_VARCHAR>

 <BYTE>16 </BYTE>

 <BYTES ascii="Microsoft SQL Server..">4D 69 63 72

6F 73 6F 66 74 20 53 51 4C 20 53 65 72 76 65 72 00 00 </BYTES>

 </B_VARCHAR>

 </ProgName>

 <ProgVe rsion>

 <DWORD>00 00 00 00 </DWORD>

 </ProgVersion>

 </LOGINACK>

 <ENVCHANGE>

 <TokenType>

 <BYTE>E3 </BYTE>

 </TokenType>

 <Length>

 <USHORT>09 00 </USHORT>

 </Length>

 <EnvChangeData>

 <BYTES>04 03 35 31 32 03 35 31 32 </BYTES>

 </EnvChangeData>

 </ENVCHANGE>

 <DONE>

 <TokenType>

 <BYTE>FD </BYTE>

 </TokenType>

 <Status>

 <USHORT>00 00 </USHORT>

 </Status>

 <CurCmd>

 <USHORT>00 00 </USHORT>

 </CurCmd>

 <DoneRowCount>

 <LONG>00 00 00 00 </LONG>

 </DoneRowCount>

 </DONE>

 </TableResponse>

 </PacketData>

95 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

4.4 SQL Batch Client Request

The following is an example of the client request that is sent from the client to the server.

01 01 00 1E 00 00 01 00 73 65 6C 65 63 74 20 63

6F 6C 31 20 66 72 6F 6D 20 66 6F 6F 0D 0A

 <PacketHeader>

 <Type>

 <BYTE>01 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>1E </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </PacketHeader>

 <PacketData>

 <SQLBatch>

 <SQLText>

 <BYTESTREAM>

 <BYTES>

73 65 6C 65 63 74 20 63 6F 6C 31 20 66 72 6F 6D 20 66 6F 6F

0D 0A </BYTES>

 </BYTESTREAM>

 </SQLText>

 </SQLBatch>

 </PacketData>

4.5 SQL Batch Server Response

The following is an example of the server response that is sent from the server to the client.

04 01 00 26 00 33 01 00 A0 05 00 04 63 6F 6C 31

A1 05 00 07 00 08 00 38 D1 01 00 00 00 FD 10 00

C1 00 01 00 00 00

 <PacketHeader>

 <Type>

 <BYTE>04 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

96 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>26 </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </PacketHeader>

 <PacketData>

 <TableResponse>

 <COLNAME>

 <TokenType>

 <BYTE>A0 </BYTE>

 </TokenType>

 <Length>

 <USHORT>05 00 </USHORT>

 </Length>

 <ColName>

 <B_VARCHAR>

 <BYTE>04 </BYTE>

 <BYTES ascii="col1">63 6F 6C 31 </BYTES>

 </B_VARCHAR>

 </ColName>

 </COLNAME>

 <COLFMT>

 <TokenType>

 <BYTE>A1 </BYTE>

 </TokenType>

 <Length>

 <USHORT>05 00 </USHORT>

 </Length>

 <ColumnData>

 <UserType>

 <USHORT>07 00 </USHORT>

 </UserType>

 <Flags>

 <USHORT>08 00 </USHORT>

 </Flags>

 <TYPE_INFO>

 <FIXEDLENTYPE>

 <BYTE>38 </BYTE>

 </FIXEDLENTYPE>

 </TYPE_INFO>

 </ColumnData>

 </COLFMT>

 <ROW>

 <TokenType>

 <BYTE>D1 </BYTE>

 </TokenType>

 <TYPE_VARBYTE>

 <BYTES>01 00 00 00 </BYTES>

 </TYPE_VARBYTE>

97 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 </ROW>

 <DONE>

 <TokenType>

 <BYTE>FD </BYTE>

 </TokenType>

 <Status>

 <USHORT>10 00 </USHORT>

 </Status>

 <CurCmd>

 <USHORT>C1 00 </USHORT>

 </CurCmd>

 <DoneRowCount>

 <LONG>01 00 00 00 </LONG>

 </DoneRowCount>

 </DONE>

 </TableResponse>

 </PacketData>

4.6 RPC Client Request

The following is an example of the RPC request that is sent from the client to the server.

03 01 00 24 00 00 01 00 0A 70 5F 61 6C 6C 74 79

70 65 73 00 00 0A 40 62 69 67 69 6E 74 63 6F 6C

00 34 01 00

 <PacketHeader>

 <Type>

 <BYTE>03 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>24 </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 < /BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </PacketHeader>

 <PacketData>

 <RPCRequest>

 <RPCReqBatch>

 <NameLenProcID>

 <ProcName>

 <B_VARCHAR>

 <BYTE>0A </BYTE>

 <BYTES ascii="p_alltypes">70 5F 61 6C 6C 74 79

70 65 73 </BYTES>

98 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 </B_VARCHAR>

 </ProcName>

 </NameLenProcID>

 <OptionFlags>

 <fWithRecomp>

 <BIT>false</BIT>

 </fWithRecomp>

 <fNoMetaD ata>

 <BIT>false</BIT>

 </fNoMetaData>

 </OptionFlags>

 <ParameterData>

 <ParamMetaData>

 <B_VARCHAR>

 <BYTE>0A </BYTE>

 <BYTES ascii="@bigintcol">40 62 69 67 69 6E 74

63 6F 6C </BYTES>

 </B_VARCHAR>

 <StatusFlags>

 <fByRefValue>

 <BIT>false</BIT>

 </fByRefValue>

 <fDefaultValue>

 <BIT>false</BIT>

 </fDefaultValue>

 <fCookie>

 <BIT>false</BIT>

 </fCookie>

 </StatusFlags>

 <TYPE_INFO>

 <FIXEDLENTYPE>

 <BYTE>34 </BYTE>

 </FIXEDLENTYPE>

 </TYPE_INFO>

 </ParamMetaData>

 <ParamLenData>

 <TYPE_VARBYTE>

 <BYTES>01 00 </BYTES>

 </TYPE_VARBYTE>

 </ParamLenData>

 </ParameterData>

 </RPCReqBatch>

 </RPCRequest>

 </PacketData>

4.7 RPC Server Response

The following is an example of the RPC response that is sent from the server to the client.

04 01 00 1F 00 35 01 00 FF 11 00 C1 00 01 00 00

00 79 00 00 00 00 FE 00 00 E0 00 00 00 00 00

 <PacketHeader>

 <Type>

 <BYTE>04 </BYTE>

 </Type>

99 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>1F </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </PacketHeader>

 <PacketData>

 <TableResponse>

 <DONEINPROC>

 <TokenType>

 <BYTE>FF </BYTE>

 </TokenType>

 <Status>

 <USHORT>11 00 </USHORT>

 </Status>

 <CurCmd>

 <USHORT>C1 00 </USHORT>

 </CurCmd>

 <DoneRowCount>

 <LONG>01 00 00 00 </LONG>

 </DoneRowCount>

 </DONEINPROC>

 <RETURNSTATUS>

 <TokenType>

 <BYTE>79 </BYTE >

 </TokenType>

 <VALUE>

 <LONG>00 00 00 00 </LONG>

 </VALUE>

 </RETURNSTATUS>

 <DONEPROC>

 <TokenType>

 <BYTE>FE </BYTE>

 </TokenType>

 <Status>

 <USHORT>00 00 </USHORT>

 </Status>

 <CurCmd>

 <USHORT>E0 00 </USHORT>

 </CurCmd>

 <DoneRowCount>

 <LONG>00 00 00 00 </LONG>

 </DoneRowCount>

 </DONEPROC>

 </TableResponse>

 </PacketData>

100 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

4.8 Attention Request

The following is an example of the Attention request that is sent from the client to the server.

06 01 00 08 00 00 01 00

<PacketHeader>

 <Type>

 <BYTE>06</BYTE>

 </Type>

 <Status>

 <BYTE>01</BYTE>

 </Status>

 <Length>

 <BYTE>00</BYTE>

 <BYTE>08</BYTE>

 </Length>

 <SPID>

 <BYTE>00</BYTE>

 <BYTE>00</BYTE>

 </SPID>

 <Packet>

 <BYTE>01</BYTE>

 </Packet>

 <Window>

 <BYTE>00</BYTE>

 </Window>

</PacketHeader>

4.9 SSPI Message

The following is an example of the SSPI message carrying the SSPI payload that is sent from the
client to the server.

11 01 00 3F 00 00 04 00 4E 54 4C 4D 53 53 50 00

01 00 00 00 97 B2 08 E2 07 00 07 00 30 00 00 00

08 00 08 00 28 00 00 00 06 00 71 17 00 00 00 0F

58 49 4E 57 45 49 48 32 52 45 44 4D 4F 4E 44

<PacketHeader>

 <Type>

 <BYTE>11 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>3F </BYTE>

 </Length >

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

101 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 <BYTE>04 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

</PacketHeader>

<PacketData>

 <SSPI>

 <BYTES>

4E 54 4C 4D 53 53 50 00 01 00 00 00 97 B2 08 E2 07 00 07 00

30 00 00 00 08 00 08 00 28 00 00 00 06 00 71 17 00 00 00 0F

58 49 4E 57 45 49 48 32 52 45 44 4D 4F 4E 44</BYTES>

 </SSPI>

</PacketData>

4.10 Bulk Load

The following is an example of the BULKLOADBCP request that is sent from the client to the server.

07 01 00 21 00 00 01 00 17 00 01 00 0F 00 00 00

00 00 00 00 00 00 00 17 00 65 62 63 64 65 02 14

0F

 <PacketHeader>

 <Type>

 <BYTE>07 </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>21 </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

 </PacketHeader>

 <PacketData>

 <BulkLoadBCP>

 <RowData>

 <Length>

 <USHORT>17 00 </USHORT>

 </Length>

 <ColData>

 <NumVarCols>

 <BYTE>01 </BYTE>

 </NumVarCols>

 <RowNum>

102 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

 <BYTE>00 </BYTE>

 </RowNum>

 <FixedColData>

 <TYPE_VARBYTE>

 <BYTES>0F 00 00 00 </BYTES>

 </TYPE_VARBYTE>

 </FixedColData>

 <Paddings>

 <BYTES>00 00 00 00 00 00 00</BYTES>

 </Paddings>

 <RowLen>

 <USHORT>17 00 </USHORT>

 </RowLen>

 <VarColData>

 <BYTES>65 62 63 64 65 </BYTES>

 </VarColData >

 <Adjust>

 <BYTES>02 </BYTES>

 </Adjust>

 <Offset>

 <BYTES>14 0F </BYTES>

 </Offset>

 </ColData>

 </RowData>

 </BulkLoadBCP>

 </PacketData>

4.11 Transaction Manager Request

The following is an example of the transaction manager request that is sent from the client to the
server.

0E 01 00 0C 00 00 01 00 00 00 00 00

<PacketHeader>

 <Type>

 <BYTE>0E </BYTE>

 </Type>

 <Status>

 <BYTE>01 </BYTE>

 </Status>

 <Length>

 <BYTE>00 </BYTE>

 <BYTE>0C </BYTE>

 </Length>

 <SPID>

 <BYTE>00 </BYTE>

 <BYTE>00 </BYTE>

 </SPID>

 <Packet>

 <BYTE>01 </BYTE>

 </Packet>

 <Window>

 <BYTE>00 </BYTE>

 </Window>

</PacketHeader>

103 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

<PacketData>

 <TransMgrReq>

 <RequestType>

 <USHORT>00 00 </USHORT>

 </RequestType>

 <RequestPayload>

 <TM_GET_DTC_ADDRESS>

 <US_VARBYTE>

 <USHORT>00 00 </USHORT>

 <BYTES></BYTES>

 </US_VARBYTE>

 </TM_GET_DTC_ADDRESS>

 </RequestPayload>

 </TransMgrReq>

</PacketData>

104 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

5 Security

5.1 Security Considerations for Implementers

As previously described in this document, the TDS 4.2 protocol provides facilities for authentication

and channel encryption negotiation. If SSPI authentication is requested by the client application, the
exact choice of security mechanisms is determined by the SSPI layer. Likewise, although the
decision as to whether channel encryption should be used is negotiated in the TDS 4.2 layer, the
exact choice of cipher suite is negotiated by the TLS/SSL layer.

5.2 Index of Security Parameters

Security parameter Section

TLS Negotiation 2.2.6.4 PRELOGIN message

3.2.5.1 Sent Initial PRELOGIN Packet State (Client)

3.2.5.2 Sent TLS/SSL Negotiation Packet State (Client)

3.3.5.2 TLS/SSL Negotiation (Server)

SSPI Authent ication 2.2.6.7 SSPI message

3.2.5.4 Sent SSPI Record with SPNEGO Packet Size

3.3.5.4 SPNEGO Nego tiation

SQL Authentication 2.2.6.3 LOGIN message

3.3.5.3 Login Ready (Server)

105 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

6 Appendix A: Product Behavior

The information in this specification is applicable to the following Microsoft products or supplemental
software. References to product versions include released service packs:

Á Microsoft® SQL Server® 6.5

Á Microsoft® SQL Server® 7

Á Microsoft® SQL Server® 2000

Á Microsoft® SQL Server® 2005

Á Microsoft® SQL Server® 2008

Á Microsoft® SQL Server® 2008 R2

Exceptions, if any, are noted below. If a service pack or Quick Fix Engineering (QFE) number

appears with the produc t version, behavior changed in that service pack or QFE. The new behavior
also applies to subsequent service packs of the product unless otherwise specified. If a product

edition appears with the product version, behavior is different in that product editi on.

Unless otherwise specified, any statement of optional behavior in this specification that is prescribed
using the terms SHOULD or SHOULD NOT implies product behavior in accordance with the SHOULD
or SHOULD NOT prescription. Unless otherwise specified, the term MAY implies that the product
does not follow the prescription.

<1> Section 2.1: For more information related to Microsoft -specific implementations, see [MSDN -

Name dPipes].

<2> Section 2.2.2.6: If a stored procedure executes one or more other stored procedures, a
DONEPROC token data stream signals the completion of each stored procedure. When executing
SQL statements as a result of a trigger ev ent, the completion of each of the SQL statements inside

the trigger is indicated by a DONEINPROC token data stream.

<3> Section 2.2.6.7: The SSPI signature for DBLIB that is recognized by SQL Server is "d5bf8d50 -
451e -11d1 -968d -e4b78 3000000". The SSPI token contains US_VARBYTE: that is, the length of the

string followed by the string itself.

<4> Section 2.2.7.5: This element is not implemented in SQL Server.

<5> Section 2.2.7.7: This bit i s not set by SQL Server, and should be considered reserved for future
use.

<6> Section 2.2.7.8: This bit is not set by SQL Server, and should be considered reserved for future
use.

<7> Section 2.2.7.9: This bit is not set by SQL Server, and should be considered reserved for future

use.

<8> Section 2.2.7.11: Numbers less than 20001 are reserved by SQL Server.

<9> Section 2.2.7.11: SQL Server does not raise system erro rs with severities of 0 through 9.

<10> Section 2.2.7.11: For compatibility reasons, SQL Server converts severity 10 to severity 0
before returning the error information to the calling application.

http://go.microsoft.com/fwlink/?LinkId=127839
http://go.microsoft.com/fwlink/?LinkId=127839

106 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

<11> Section 2.2.7.12: Numbers less than 20001 are reserved by SQL Server.

<12> Section 2.2.7.17: This flag is not implemented in SQL Server.

107 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

7 Change Tracking

No table of changes is available. The document is either new or has had no changes since its last
release.

108 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

8 Index

A

Abstract data model
client details 76
common details 71
server details 82

Applicability 11
Attention message 14
Attention request 100
Attention signal

out -of -band 23
Attention tokens 22

B

Bulk Load BCP 32
Bulk load update text/write tex t 34

C

Capability negotiation 12
Change tracking 107
Client details

overview 76
Client messages 13
Client request execution 85
Common protocol details 71

D

Data buffer stream tokens 32
Data streams

data - type -dependent 26
unknown - length 26
variable - length 26

Data type definitions 27
Data types

fixed - length 27
variable - length 28

Data - type -dependent data streams 26
DONE and Attention tokens 22
DONE tokens 22

E

Error me ssages 16
Example

Attention request 100
login request 87
login response 91
pre - login request 86
RPC client request 97
RPC server response 98
SQL batch client request 95
SQL batch server response 95
SQL command with binary data 101
SSPI message 100
transaction manager request 102

Examples

protocol 86
token stream 22

F

Final state (section 3.2.5.8 81 , section 3.3.5.7 85)
Fixed - length data types 27
Fixed - length token 21

G

Glossary 7
Grammar definition

general rules 23
Grammar definition for token description 23

H

Higher - layer triggered events
client details 77
common details 71
server details 83

I

Info messages 16
Informative references 9
Initial state 83
Initialization

client details 77
server details 83

Introduction 7

L

Logged in 84
Logged In state 80
LOGIN 35
Login ready 84
Login request 87
Login response 91

M

Message
pre - login 14

Message processing events and sequencing rules
client details 78
common details 71
server details 83

Message syntax 13
Messages

client 13
transport 13

N

Normative references 8

109 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

O

Other local events
client details 81
common details 75
server details 85

Out -of -band attention signal 23
Overview (synopsis) 9

P

Packet data 19
Packet data token and tokenless data streams 19
Packet data token stream definition 46

ALTFMT 46

ALTNAME 48
ALTROW 49
COLFMT 51
COLINFO 50
COLNAME 52
DONE 53
DONEINPROC 54
DONEPROC 56
ENVCHANGE 57
ERROR 58
INFO 61
LOGINACK 62
OFFSET 63
ORDER 64
RETURNSTATUS 65
RETURNVALUE 66
ROW 67
SSPI 68
TABNAME 69

Packet header
length 19
overview 17
PacketID 19
SPID 19
status 18
type 17
window 19

Packets
overview 17

Preconditions 11
PRELOGIN 39
Pre- login message 14
Pre- login request 86
Prerequisites 11
Product beh avior 105
Protocol details overview 71
Protocol examples 86

R

References

informative 9
References - normative 8
Relationship to other protocols 11
Remote procedure call 14
Return status 16

Row data 16
RPC client request 97
RPC request 41
RPC server response 98

S

Security considerations for implementers 104
Security overview 104
Security parameters index 104
Sending an SQL batch 22
Sent Attention state 81
Sent Client Request state 81
Sent Initial PRELOGIN Packet state 79
Sent LOGIN Record state 80
Sent SSPI Record with SPNEGO Packet state 80
Sent TLS/SSL Negotiation Packet state 79
Server details

overview 82

Server messages 15
SPNEGO negotiation 84
SQL Batch

sending 22
SQL batch client request 95
SQL batch server response 95
SQL command with binary data (section 2.2.1.4 14 ,

section 4.10 101)
SQLBatch 43
SSPI message (section 2.2.6.7 44 , section 4.9 100)
Standards as signments 12
SWL command 14
Syntax

message 13

T

Timer events
client details 81
common details 75
server details 85

Timers
client details 77
common details 71
server details 83

TLS/SSL negotiation 83
Token

fixed - length 21
variable - length 21
zero - length 21

Token data stream definition
ALTFMT 46
ALTNAME 48
ALTROW 49
COLFMT 51
COLINFO 50
COLNAME 52
DONE 53
DONEINPROC 54
DONEPROC 56
ENVCHANGE 57
ERROR 58

INFO 61

110 / 110

[MS -SSTDS] ð v20111108
 Tabular Data Stream Protocol Version 4.2

 Copyright © 2011 Microsoft Corporation.

 Release: Tuesday, November 8, 2011

LOGINACK 62
OFFSET 63
ORDER 64
RETURNSTATUS 65
RETURNVALUE 66
ROW 67
SSPI 68
TABNAME 69

Token definition 20
Token description

grammar definition 23
Token stream 20
Token stream examples 22
Tokenless data streams 19
Tokenless stream 20
Tracking changes 107
Transaction manager request (section 2.2.1.7 15 ,

section 2.2.6.8 45 , section 4.11 102)
Transport 13
TYPE_INFO rule 31

U

Unknown - length data streams 26

V

Variable - length data streams 26
Variable - length data types 28
Variable - length token 21
Vendor -extensible fields 12
Versioning 12

W

Write text 34

Z

Zero - length token 21

	Contents
	1 Introduction
	1.1 Glossary
	1.2 References
	1.2.1 Normative References
	1.2.2 Informative References

	1.3 Protocol Overview (Synopsis)
	1.4 Relationship to Other Protocols
	1.5 Prerequisites/Preconditions
	1.6 Applicability Statement
	1.7 Versioning and Capability Negotiation
	1.8 Vendor-Extensible Fields
	1.9 Standards Assignments

	2 Messages
	2.1 Transport
	2.2 Message Syntax
	2.2.1 Client Messages
	2.2.1.1 Pre-Login
	2.2.1.2 Login
	2.2.1.3 SQL Batch
	2.2.1.4 Bulk Load
	2.2.1.5 Remote Procedure Call
	2.2.1.6 Attention
	2.2.1.7 Transaction Manager Request

	2.2.2 Server Messages
	2.2.2.1 Pre-Login Response
	2.2.2.2 Login Response
	2.2.2.3 Row Data
	2.2.2.4 Return Status
	2.2.2.5 Return Parameters
	2.2.2.6 Response Completion (DONE)
	2.2.2.7 Error and Info Messages
	2.2.2.8 Attention Acknowledgment

	2.2.3 Packets
	2.2.3.1 Packet Header
	2.2.3.1.1 Type
	2.2.3.1.2 Status
	2.2.3.1.3 Length
	2.2.3.1.4 SPID
	2.2.3.1.5 PacketID
	2.2.3.1.6 Window

	2.2.3.2 Packet Data

	2.2.4 Packet Data Token and Tokenless Data Streams
	2.2.4.1 Tokenless Stream
	2.2.4.2 Token Stream
	2.2.4.2.1 Token Definition
	2.2.4.2.1.1 Zero-Length Token (xx01xxxx)
	2.2.4.2.1.2 Fixed-Length Token (xx11xxxx)
	2.2.4.2.1.3 Variable-Length Token (xx10xxxx)

	2.2.4.3 DONE and Attention Tokens
	2.2.4.4 Token Stream Examples
	2.2.4.4.1 Sending a SQL Batch
	2.2.4.4.2 Out-of-Band Attention Signal

	2.2.5 Grammar Definition for Token Description
	2.2.5.1 General Rules
	2.2.5.1.1 Least Significant Bit Order

	2.2.5.2 Data Stream Types
	2.2.5.2.1 Unknown-Length Data Streams
	2.2.5.2.2 Variable-Length Data Streams
	2.2.5.2.3 Data-Type-Dependent Data Streams

	2.2.5.3 Data Type Definitions
	2.2.5.3.1 Fixed-Length Data Types
	2.2.5.3.2 Variable-Length Data Types

	2.2.5.4 Data Type Details
	2.2.5.4.1 System Data Type Values
	2.2.5.4.1.1 Integers
	2.2.5.4.1.2 Timestamp
	2.2.5.4.1.3 Character and Binary Strings
	2.2.5.4.1.4 Fixed-Point Numbers
	2.2.5.4.1.5 Floating-Point Numbers
	2.2.5.4.1.6 Decimal/Numeric
	2.2.5.4.1.7 GUID
	2.2.5.4.1.8 Date/Times

	2.2.5.5 Type Info Rule Definition
	2.2.5.6 Data Buffer Stream Tokens

	2.2.6 Packet Header Message Type Stream Definition
	2.2.6.1 Bulk Load BCP
	2.2.6.2 Bulk Load Update Text/Write Text
	2.2.6.3 LOGIN
	2.2.6.4 PRELOGIN
	2.2.6.5 RPC Request
	2.2.6.6 SQLBatch
	2.2.6.7 SSPI Message
	2.2.6.8 Transaction Manager Request

	2.2.7 Packet Data Token Stream Definition
	2.2.7.1 ALTFMT
	2.2.7.2 ALTNAME
	2.2.7.3 ALTROW
	2.2.7.4 COLINFO
	2.2.7.5 COLFMT
	2.2.7.6 COLNAME
	2.2.7.7 DONE
	2.2.7.8 DONEINPROC
	2.2.7.9 DONEPROC
	2.2.7.10 ENVCHANGE
	2.2.7.11 ERROR
	2.2.7.12 INFO
	2.2.7.13 LOGINACK
	2.2.7.14 OFFSET
	2.2.7.15 ORDER
	2.2.7.16 RETURNSTATUS
	2.2.7.17 RETURNVALUE
	2.2.7.18 ROW
	2.2.7.19 SSPI
	2.2.7.20 TABNAME

	2.3 Directory Service Schema Elements

	3 Protocol Details
	3.1 Common Details
	3.1.1 Abstract Data Model
	3.1.2 Timers
	3.1.3 Initialization
	3.1.4 Higher-Layer Triggered Events
	3.1.5 Message Processing Events and Sequencing Rules
	3.1.6 Timer Events
	3.1.7 Other Local Events

	3.2 Client Details
	3.2.1 Abstract Data Model
	3.2.2 Timers
	3.2.3 Initialization
	3.2.4 Higher-Layer Triggered Events
	3.2.5 Message Processing Events and Sequencing Rules
	3.2.5.1 Sent Initial PRELOGIN Packet State
	3.2.5.2 Sent TLS/SSL Negotiation Packet State
	3.2.5.3 Sent LOGIN Record State
	3.2.5.4 Sent SSPI Record with SPNEGO Packet State
	3.2.5.5 Logged In State
	3.2.5.6 Sent Client Request State
	3.2.5.7 Sent Attention State
	3.2.5.8 Final State

	3.2.6 Timer Events
	3.2.7 Other Local Events

	3.3 Server Details
	3.3.1 Abstract Data Model
	3.3.2 Timers
	3.3.3 Initialization
	3.3.4 Higher-Layer Triggered Events
	3.3.5 Message Processing Events and Sequencing Rules
	3.3.5.1 Initial State
	3.3.5.2 TLS/SSL Negotiation
	3.3.5.3 Login Ready
	3.3.5.4 SPNEGO Negotiation
	3.3.5.5 Logged In
	3.3.5.6 Client Request Execution
	3.3.5.7 Final State

	3.3.6 Timer Events
	3.3.7 Other Local Events

	4 Protocol Examples
	4.1 Pre-Login Request
	4.2 Login Request
	4.3 Login Response
	4.4 SQL Batch Client Request
	4.5 SQL Batch Server Response
	4.6 RPC Client Request
	4.7 RPC Server Response
	4.8 Attention Request
	4.9 SSPI Message
	4.10 Bulk Load
	4.11 Transaction Manager Request

	5 Security
	5.1 Security Considerations for Implementers
	5.2 Index of Security Parameters

	6 Appendix A: Product Behavior
	7 Change Tracking
	8 Index

